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ABSTRACT 
 
 
 
The purpose behind this thesis was to design and implement audio system 

architecture, both in hardware and in software, for use in virtual environments.  The 

hardware and software design requirements were aimed at implementing acoustical 

models, such as reverberation and occlusion, and live audio streaming to any simulation 

employing this architecture.  

Several free or open-source sound APIs were evaluated, and DirectSound3D 

was selected as the core component of the audio architecture.  Creative Technology Ltd.  

Environmental Audio Extensions (EAX 3.0) were integrated into the architecture to 

provide environmental effects such as reverberation, occlusion, obstruction, and 

exclusion. 

Voice over IP (VoIP) technology was evaluated to provide live, streaming voice 

to any virtual environment.  DirectVoice was selected as the voice component of the 

VoIP architecture due to its integration with DirectSound3D.  However, extremely high 

latency considerations with DirectVoice, and any other VoIP application or software, 

required further research into alternative live voice architectures for inclusion in virtual 

environments.  Ausim3D’s GoldServe Audio System was evaluated and integrated into 

the hardware component of the audio architecture to provide an extremely low-latency, 

live, streaming voice capability. 
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I. INTRODUCTION  

In the military, most new training systems under consideration today involve 

implementation of a virtual environment.  As real world training locations become scarce 

and training budgets are trimmed, training system developers look more and more 

towards virtual environments as the answer.  Virtual environments provide training 

system developers with several key benefits - reconfigurability, variability in training 

scenarios, and training for distributed teams and individuals.  Virtual environment 

training systems may range from large, complex systems like CAVEs (Cave Automatic 

Virtual Environment) to Head Mounted Display (HMD) systems to single desktop PCs 

utilizing videogame technology.  Regardless of the type of system implemented, a virtual 

environment training system must meet both the task requirements of the trainer and the 

educational needs of the trainee. 

 

A. SOUND IN VIRTUAL ENVIRONMENTS 
The design of virtual environment training systems should start with task analyses 

describing the fidelity and types of sensory cues necessary in the virtual environment to 

provide a positive training transfer to the real-world task.  Most training systems do not 

require modeling every sensory cue.  For example, a virtual environment training system 

designed for part-task navigation training may not require any audio or haptic cues.  

Visual displays and cues may be all that is necessary to provide a trainee with enough 

fidelity to make the part-task training viable and effective.  Conversely, an aircraft 

simulator or Close Quarters Battle (CQB) virtual environment may require 

implementation of all available sensory cues to be effective and provide a positive 

transfer of training.  The presence of multi-sensory cues in these virtual environment 

training systems may be necessary to provide the user with a sense of presence and 

immersion in the virtual world.   

Many task analyses do not adequately determine which auditory cues are 

necessary to create the appropriate level of immersion and sense of presence.  More often 

than not, the absence of an auditory cue will be far more noticeable to a participant in a 
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virtual environment than its presence.  A specific type of task analysis, called an Auditory 

Task Analysis may be required for complex tasks such as CQB to determine the exact 

nature and types of auditory cues that induce presence.  Significant research is ongoing at 

the Naval Postgraduate School in several areas relating to the relationship between 

auditory cues and the sense of presence.  Studies examining physiological manifestations 

relating to presence, auditory cue effects on memory and retention, and a CQB auditory 

task analysis all relate to the larger issue of providing the most immersive virtual 

environment possible.  For a virtual environment training system to be truly effective, a 

thorough task analysis, including an auditory task analysis, will confirm whether auditory 

cues are necessary.  For those training systems that a task analysis indicates audio cues 

are necessary, critical design attention must be given to the type and quality of the 

auditory cues and the design and implementation of the audio architecture created to 

deliver those cues. 

While system developers have long understood the necessary linkage between 

display graphics fidelity and the level of immersion, auditory fidelity has not been a 

principle focus in immersion research or system design.  Many virtual environments have 

been designed and constructed with no thought at all to the implementation of an audio 

delivery system or audio design principles.  We contend that failing to address the audio 

component of a virtual environment may result in a far less effective training device.  

 

B. RESEARCH OBJECTIVE 
The principle objective of this research was to design and implement a fully 

immersive audio architecture that could be incorporated into any training system.  To be 

fully immersive, the audio architecture must provide: 

• Spatialized sound.  Spatialized sound refers to sounds emanating from 
point sources surrounding the listener.  This is how sounds occur in the 
real world.  If a virtual environment is to mimic the real world for a given 
task, sounds related to that task must appear as they do in the real world.  
Spatialized sound may be implemented with a multi-speaker system such 
as 5.1 surround, or it may be implemented with a headphone-based spatial 
audio system that provides both elevation and azimuth cues. 

• Modeling of acoustic properties in the environment.  Acoustics is a term 
used to describe audio effects that occur in the real world in a given 
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situation.  For example, sounds inside a room reverberate and reflect 
around the listener.  Depending on the material properties of the room, the 
effects may be more or less pronounced.  The audio architecture used in 
virtual environments must be capable of mimicking those effects. 

• Live voice.  Many virtual environment training systems are designed to 
support multiple participants or teams.  Verbal communication between 
participants or team members may be a critical element to task and 
mission success.  The audio architecture must support live voice between 
participants or team members.  Latency considerations must be taken into 
account in the transmission of the live voice signal.  If the latency in 
transmission becomes too great, voice communications will not only be 
ineffective, but also interfere with the training being conducted.  While 
live voice may not be included in every training system, the architecture 
must be capable of supporting verbal communications for those 
applications where it is necessary. 

• The ability to create a highly detailed auditory environment.  The 
entertainment industry has long recognized the importance of properly 
designing sound effects and sound systems to add realism, emotion, and a 
sense of immersion to film and to video games.  The first rule of sound 
design is, “see a sound, hear a sound.” (Yewdall, 1999)  The audio 
element, which is probably the most important aspect of evoking the sense 
of immersion in a VE, is ambient sound.  If the appropriate background 
sounds (machinery, artillery, animals, footsteps, etc) are not included in 
the virtual environment, the participant will likely feel detached from the 
action.   

The motivation for this research was personal.  As a military aviator with 

seventeen years of experience, the author has been exposed to numerous simulators, 

virtual environments and training systems that incorporated substandard audio designs 

and implementations.  Each of these systems failed, in varying degrees, to provide an 

optimum training environment due to a lack of attention to the critical audio component 

of their systems.  Each of these training systems could have easily been improved if an 

appropriate audio architecture had been incorporated. 

Prior to the implementation of our audio architecture, criteria were established for 

reviewing existing architectures and guide design decisions: 

• Commercial-of-the-shelf (COTS) technology.  To the greatest extent 
practicable, the audio architecture should utilize COTS products, both 
hardware and software.  Using COTS technology not only reduces cost of 
design and implementation, but in many circumstances, COTS technology 
enjoys industry technical and maintenance support. 
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• Cost.  Cost of the architecture should be minimized when possible by 
using public-domain software, open-source development APIs, free 
commercial software development kits, and existing audio hardware.   

• PC-based.  Most virtual environment training systems under development 
today will be delivered on PCs.  The audio architecture must be able to 
work within the confines of a standard PC or, if necessary, add a limited 
amount of hardware to the overall footprint of the training system.  Most 
military virtual environment training systems are being designed to be 
deployable onboard ships.  The audio architecture and system size must 
not negatively impact deployability. 

The second objective of this research was to compare Voice over Internet 

Protocol (VoIP) technologies with high-end audio systems capable of live streaming 

voice.  VoIP utilizes an encoding-decoding compression algorithm over a standard 

network connection to provide live streaming voice for any application.  Since VoIP uses 

network connections, network latency and compression latency can vary widely and 

impact the effectiveness of the live voice component of the audio architecture.  Hardware 

implementations for live voice may overcome the network limitations of VoIP, but may 

add considerable size to the footprint of the audio architecture, limit the dispersion of the 

participants in the virtual environment, and increase the cost of the overall audio delivery 

system.  Finally, comparisons were made to evaluate the quality and latency in voice 

transmissions using VoIP versus an alternative hardware implementation for live voice.   

 

C. THESIS ORGANIZATION 
This thesis is organized into the following chapters: 

• Chapter I: Introduction.  This chapter provides an overall outline of this 
thesis and describes the research objectives and motivation behind this 
research 

• Chapter II: Background.  This chapter reviews existing research into 
spatialized hearing, sound and emotion, sound design in the entertainment 
industry, and Voice over Internet Protocol (VoIP) technologies. 

• Chapter III: Architecture Design.  This chapter reviews current audio 
software and hardware architectures. 

• Chapter IV: Implementation.  This chapter describes in detail an audio 
architecture and implementation for virtual environments using a 
combination of open-source application program interfaces (API) and 
high-end, commercial-off-the-shelf (COTS) audio systems. 
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• Chapter V: Voice Latency Analysis.  This chapter describes an experiment 
to determine latency in voice transmissions between VoIP and high-end 
audio systems. 

• Chapter VI: Conclusions and Recommendations.  This chapter provides a 
recommended audio architecture and future work in improving the 
software and hardware potions of this architecture  

• Appendices: 

 A. GFAUDIO Documentation 

 B. GFAUDIO Source Code 

 C. AUSERVERLIB Documentation 

 D. AUSERVERLIB Source Code 
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II. BACKGROUND 

A. SPATIAL HEARING AND SOUND 
Spatialized sound in a virtual environment involves “virtualizing” the location of 

a sound source relative to the listener, manipulating it so that it seems it to be emanating 

from the desire location.  This is accomplished by controlling two factors, the direction 

from which the sound is coming, and the perceived distance from the sound source 

(Figure 1). 

 

 
Figure 1.   Taxonomy of Spatial Manipulation (From the Operator’s Perspective), or of 

Spatial Hearing (From the Listener’s Perspective). (Begault, 1994). 
 

There are two primary methods the brain uses to determine location and direction 

of sound sources in our environment.  For sources at low frequencies (generally below 

2Khz) interaural time difference (ITD) is a method by which the brain uses time of 

arrival differences between the two ears to discriminate direction of the source.  Sounds 

directly in front of the listener arrive at the ears at roughly the same time, while sound 

waves from sources to the left and right of the listener at different intervals.  At higher 

frequencies, the brain uses interaural intensity (IID) differences to discriminate between 

sound sources.  Many factors play a role in interaural intensity differences:  head size, 

pinnae size and shape, body shape, etc.  In general, the brain can discriminate source 

location by internally recognizing the intensity differences as the sound wave arrives at 

the ears.  Together, interaural time differences and interaural intensity differences provide 
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the basis for our ability to discriminate source location.  Of note, our auditory system 

does not possess the accuracy of our visual system - the visuals system is capable of 

discriminating approximately 1 arc minute of difference, while our auditory system is at 

best only capable of discriminating approximately one degree (Blauert, 1974).    

Unlike the visual system, which is always centered on the field of view, the 

auditory system is continuously functioning in three dimensions.  Our accuracy of 

discrimination varies in both the horizontal and vertical dimensions.  On the horizontal 

plane, we are most accurate at discriminating source locations directly forward or behind 

where the listener's head is facing.  Accuracy degrades as the source location is moved 

away from the central axis of the head.  In the vertical plane around the head, sound 

sources are symmetric with respect to interaural time difference and interaural intensity 

differences, and are thus much more difficult to discriminate location.  Blauert combines 

both of these concepts into a phenomenon called “localization blur” (Blauert, 1974).  In 

using interaural time differences and interaural intensity differences at the primary 

discrimination techniques, our brains can be relatively easily fooled into thinking sounds 

emanate from incorrect source locations (Figure 2).   

 

 
Figure 2.   Reversal Error and Localization Error (Blur). (Begault, 1994). 

 

For example, a source on the horizontal plane at 45 degrees relative to central axis 

of the head would present the same interaural intensity difference and interaural time 

difference as a source 135 degrees relative to the central axis of the head.  When this 

arises, the primary way we attempt to discriminate these two sources is to use head 

movements to change the relative positioning of the sound source.  Even minor one-

degree head directional changes can produce the ITD's and IID's necessary to 

discriminate direction. 
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In virtual environments using loudspeakers, the speakers act as the sound sources.  

The fidelity of spatialization is dependent on the number and location of the speakers in 

the environment.  With as few as two speakers, virtual sound sources can be created over 

a wide field around the participant, albeit not completely surrounding the listener.  Most 

speaker systems are designed to exist in the horizontal plane around the listener.  It is 

difficult to present sound sources possessing elevation either above or below the listener.  

Obviously, more speakers create more sound sources, and if the elevation of the speakers 

is adjusted properly, elevation in virtual sound sources can be achieved.  To achieve 

elevation cues, separate audio channels and speakers would be necessary for each sound 

source to be presented.  For example, sounds virtually positioned above the listener 

would only play through a speaker system elevated above the physical location of the 

listener.  In an immersive audio environment with many sources, this is not feasible.  In 

general, elevation is not considered in the design of virtual environment audio systems.   

With headphones, sound sources can be spatialized in three dimensions using 

filters incorporating Head Related Transfer Functions (HRTFs).  HRTF’s are complex 

filter sets that capture the filtering properties of the pinnae including IIDs and ITDs.  

Several commercial applications have been developed to permit collection of HRTF data, 

including the Ausim3D HeadZap HRTF collection system.  The HRTF is collected by 

measuring the IID and ITD of a sound source that is sequentially positioning around the 

head, using Fourier transforms to build a set of equations that act as a filter to any sound 

source prior to presentation (Begault and Wenzel, 1993).  Once calculated, this filter, 

which is frequency dependent, can be applied to all sound sources delivered over 

headphones, providing a fully spatialized, three-dimensional auditory environment. 
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Our auditory system is far less capable than our visual system in terms of 

positional discrimination, given a constant audio signal.  A virtual environment auditory 

display does not require exact sound source positioning.  The tradeoff between 

processing efficiency and sound source positioning should be weighed carefully.  The 

auditory display must permit the user to use head movements to discriminate source 

locations.  This is automatic in a virtual environment using loudspeakers.  In a virtual 

environment using headphones, the participant must be head-tracked to permit natural 

head movements to aid in sound source position discrimination. 



For virtual environments using loudspeakers, the concept of the “sweet spot” is a 

critical design issue.  The sweet spot is the place between the speakers where all of the 

speaker channels combine to create the desired special sound effect. A person positioned 

in the “sweet spot” is going to benefit from much richer and generally better sounding 

audio.  The “sweet spot” for a two-speaker setup is the mid-point of the line drawn 

between the two speakers.  Additionally, the speakers should be aimed directly at the 

head.  For surround sound systems, the “sweet spot” is the point where the diagonals 

cross from opposite satellite speakers.  The placement of the subwoofer is not critical - 

the human ear cannot distinguish the direction of the lower frequencies associated with 

subwoofers. 

 

B. SOUND AND EMOTION 
 
1. Linking Performance with Optimum Stress or Arousal 
A large body of research has been conducted into how humans react to stress.  

Stress, and most importantly an increase in stress, can be caused by external stimuli, such 

as noise, temperature change, or time pressure for task completion.  Stress can also result 

from internal psychological factors, such as anxiety, fatigue, frustration, and anger.  

According to Wickens (1999), stress takes on three manifestations: 

• Stress produces a phenomenological experience and often an emotional 
one.  The individual subjected to the stress notices a feeling of frustration 
or arousal. 

• Often, a change in physiology is observed, such as a change in heart rate 
or blood pressure.  This affect may by of limited duration or long-term, 
sustained affect. 

• Stressors affect the characteristics of information processing.  The 
assumption is that the affect is degradation in information processing 
capability for the person subjected to the stress, but this is not always the 
case. 

An easy way to measure the effect of stressors in the environment is through 

physiological measurements, such as heart rate, blood pressure, pupil dilation, and other 

activities of the central nervous system.  Each of these can describe one’s level of 

arousal.  Different types of stressors can either increase or decrease the level of arousal.  

Stressors such as anxiety, pressure from superiors, noise (a form of audio) generally 
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increase one’s level of arousal while stressors like fatigue will decrease the level of 

arousal.  The Yerkes Dodson Law (Yerkes & Dodson, 1908) characterized the 

relationship between arousal and performance as seen in Figure 3.   

 

 
Figure 3.   Yerkes Dodson Law. (Wickens, 1999). 

 

As arousal increases towards the optimum level, performance increases.  

However, once a critical stress threshold is reached, performance will start to degrade.  

Since stressors can affect the level or arousal, stressors can affect the level of 

performance.  In virtual environments, we have control over many stressors placed on 

participants, including the fidelity of the information provided the to virtual environment 

participant.  Many stressors will be uncontrollable by the designers of the virtual 

environment, such as the participant’s level of anxiety, pressure by superiors, and other 

factors in the participant’s life.  However, for those stressors we can control, we can 

affect changes in the participant’s level of arousal and thus the level of performance.  The 

inclusion of audio in a virtual environment is one stressor that we can control.  Proper 

audio design and implementation in a virtual environment can provide a method to 

increase the level of arousal and thus the level of performance while in the virtual 

environment.   

 

2. Linking Arousal with Audio 
Research at the Naval Postgraduate School was recently conducted investigating 

how physiological indicators could be used as a measure of presence in a virtual 

environment (Scorgie and Sanders, 2002).  Subjects were asked to participate in a first-
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person shooter video game.  The subjects were divided into audio treatment groups as 

follows: 

• Control:  No audio presented to subjects 

• Treatment 1: Only headphone audio presented to subjects 

• Treatment 2: Only loudspeaker audio presented to subjects 

• Treatment 3 - headphone and subwoofer speaker audio 

The physiological data that was measured included heart rate, blood volume pump 

(BVP), galvanic skin response, and temperature. 

While the intent of the experiment was to determine whether physiological 

markers or indicators could be used as a measure of the sense of presence, the data can be 

used to support the link between arousal or stress and audio for this paper.  Electro 

dermal activity, heart rate and blood pressure all increased with the inclusion of audio in 

the virtual environment, indicating increased arousal.  Body temperature decreased with 

the inclusion of audio; this is to be expected - the body withdraws blood from the 

extremities and sends more to the vital organs during higher states of arousal, normally 

associated with a “fight or flight” syndrome.  All effects were found to be statistically 

significant.  The results of the experiment indicate that the addition of audio, in whatever 

form (treatment group), raised certain physiological measures, all of which can be 

directly related to one’s level of arousal. 

 

C. SOUND AND TRAINING 

 

1. Linking Audio with Performance 

Performance is linked to an optimum level of stress or arousal one is subjected to 

in his environment.  It has been shown that the inclusion of audio in an environment can 

raise or affect the stress or arousal level of a person in that environment, whether it is the 

real world or a virtual environment.  A transitive link therefore can be established 

between performance and audio.  The presence of audio cues can raise the arousal levels 

of participants.  If the arousal level of the individual can be elevated to the optimum 

level, performance will improve.  It stands to reason, therefore, that including audio cues 

appropriately should improve performance.  To this point, performance has not been 
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linked to any task or environment.  The next three sections will further examine the affect 

on performance in the context of a training environment.  This is not exclusive to virtual 

environments - it applies to real-world training environments as well.  However, if the 

link is established between audio and training performance in any environment, at stands 

to reason that it will apply also in virtual environments.  This is the key to linking audio 

cues that may not be evident as necessary in a task analysis into a requirements 

specification of a training system. 

 

2. Linking Performance with Memory, Expertise and Training 

Wickens and Holland (1999) divide memory into two main categories - working 

memory and long-term memory.  Working memory is the short-term storage capacity 

where we temporarily store, analyze, transform and compare data.  Long-term memory is 

where information is stored for later retrieval and use.  It is practically, if not 

scientifically, considered to be of infinite storage capacity.  Wickens suggests there are 

five characteristics of how we learn, only two of which will be covered here.  First, there 

is am emphasis on instances or situations.  We generally learn through specific examples 

or situations and then generalize to others.  This theory is supported by Brown, Collins 

and Duguid (1989) in their paper on Situated Cognition.  Their research indicates that 

humans learn best is the context of where the learned material or subject matter can be 

used.  They coin the phrase “cognitive apprenticeship”; learning through doing in a 

specific situation is far more effective than learning in an abstract, classroom 

environment without tangible examples.  The second characteristic of learning is that we 

use chunking, or grouping of associated individual pieces of data into larger single units 

for easier recall and access.  

Posner (1983) and Chi, Glaser, and Farr (1998) suggest that the defining 

characteristic of expertise is exceptional feats of memory, both in chunking strategies and 

recall.  Training systems, including virtual environments, are created to improve 

performance in a given task, hopefully to the level that of an expert.  If expertise is 

gained through repetitive practice, elaborative rehearsal and exposure to multiple 

experiences in a domain, a properly constructed training system will afford trainees the 
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requisite experiences to gain that expertise.  Does the inclusion of audio assist the trainee 

in the acquisition of domain knowledge, skills, and improved memory? 

Dinh, Walker, Song, Kobayashi, and Hodges (1999) conducted an experiment to 

determine if the presence of multi-sensory inputs in a virtual environment had any impact 

on the user’s level of presence and memory retention for objects and events in that 

environment.  They found that the addition of sensory inputs, other than the standard 

visual modality provided with most virtual environments, significantly increased the 

user’s level of presence in the virtual environment.  In basic terms, an increase in the 

level of presence was found for each type of sensory input added - tactile, audio, and 

olfactory.  Each had an additive effect on the level of presence.  Their study supports the 

contention that the addition of audio increases the sense of presence.  Furthermore, the 

results of their study indicate that memory of objects and events in the virtual 

environment improved as additional sensory inputs were provided to the user.  A virtual 

environment that uses a single modality, such as a visual display, is inferior to one that 

incorporates multi-sensory information, including auditory, tactile and olfactory cues.  

Admittedly, not every task requires multi-sensory cues, and not every virtual 

environment training system will be capable of multi-sensory cueing information.  

However, their study further justifies conducting thorough task analyses to determine 

whether the presence of multi-sensory cues is appropriate.  When task analyses indicate 

that audio cues are necessary for a particular task, inclusion of these audio cues in the 

virtual environment should, theoretically, improve memory, develop increased expertise 

in the specific domain, and improve task performance. 

The two previous paragraphs transitively link audio in an environment to an 

increase and improvement in performance.  First, audio was linked with an increase in 

arousal.  Then, an increase in arousal was linked with an increase in performance.  This 

link suggests that proper audio design and implementation can improver performance in 

virtual environments. 
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3. Selected Task Analyses 

This section will examine several task analyses developed to provide the 

foundation for virtual training environments.  Each is assessed for the following: 

• Tasks analysis requirement(s) for audio cues 

• Whether those audio cues are could be included in the virtual training 
environment 

• The possible benefit of including audio and audio cues in the virtual 
environment 

Grassi (2000) conducted a task analysis of pier side ship handling as a 

development tool to construct a virtual environment pier side ship-handling simulator.  In 

the critical cue inventory for determining whether a ship’s engines have properly started 

and are online, a critical cue for the conning officer is the sound the conning officer will 

hear as the ship’s engines start up (Figure 4).  During a conning officer’s assessment of 

environmental conditions and surrounding environment, auditory clues provided by 

ship’s pennants flapping in the wind provide the conning officer with an estimation of 

wind speed and direction. 

 

 
Figure 4.   Example of Critical Cue Inventory for Pier Side Ship Handling - 

Verify_Engines_Are_Started_And_Online. (Grassi, 2000). 
 

Numerous references are made to the conning officer checking rope lines for 

taught or slack conditions in many of the individual task elements.  The sound of a line 

stretching to near breaking point is a well-known auditory cue of a line being too taught.  

As orders are given by the conning officer to maneuver the ship, especially those 

involving changes in engine state or RPM, answering bells provide the officer with an 
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auditory cue as to order compliance.  Each of these is listed as a critical cue.  If a virtual 

environment simulator for ship handling ignores these critical cues, potentially degraded 

training in pier side ship handling will result.  Conning officers trained in pier side ship-

handling in the virtual environment will not gain the experience of using those critical 

auditory cues in actual ship-handling in the real world. 

Similarly, Norris (2000) refers to specific audio cues in his task analysis of 

underway replenishment ship handling.  Like Grassi, he finds engine sounds as critical 

audio cues in determining whether verbal orders for maneuvering and speed changes 

have been carried out.  During underway replenishment, the bridge of a ship is a host to 

many activities, many of which are driven by verbal commands.  Verbal communication 

is critical to every phase of underway replenishment (Figure 5).  Verbal interaction 

between the Commanding Officer, conning officer, Helm, and Navigator is constant and 

precise - each monitors the communication between all of the other players in an 

underway replenishment situation. 

 .  .  .  goal: Receive_Approach_Order_From_CO 
 [select: Receive_Verbal_Order_From_CO_To_Commence_Approach 
Receive_Verbal_Order_Via_XO_To_Commence_Approach 
Receive_Verbal_Order_Via_OOD_To_Commence_Approach] 
 
.  .  .  .  goal: Acknowledge_Receiving_Order 

 
 

Figure 5.   Example of Underway Replenishment Verbal Audio Cues. (Norris, 2000). 
 

Norris’ task analysis is replete with critical verbal cues between all participating 

watch stations.  A virtual environment simulator modeling underway replenishment that 

did not include verbal communication would be severely limited.  

Both example task analyses indicate that specific audio cues are necessary to 

complete the task successfully.  Both scenarios could be incorporated into virtual 

environments without any audio at all.  Text messaging could be a possible substitute for 

voice audio and ship’s engine noises could simply not be included.  However, the task 

analysis suggests that these cues are critical to the success of the evolution.  Ignoring 

critical cues degrades the quality of the simulator and training.  Couple the “critical-ness” 

of the cues with findings that multi-sensory cues in virtual environments add in memory 
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retention of objects and events, inclusion of audio in the virtual environment simulator is 

seen as not only beneficial, but necessary. 

 
4. Summary 
A transitive link has been established between the inclusion of audio in virtual 

environments with a benefit to both training and performance.  This link has not been 

established to be causative or direct, but instead built upon existing research into 

memory, arousal, expertise, training and learning.  Further study is warranted, and 

transfer-of-training experiments should be conducted to determine if there is an actual 

cause-effect relationship between virtual environment audio and training performance.  

However, given the relationships described above, virtual environment developers and 

designers should pay significant attention to the audio design and implementation of their 

systems.  Ignoring the link between audio implementation and training performance can 

result in degraded training performance and the ultimate validity of the training system.  

As a result, degraded training will affect operational performance.  In the military, where 

the skills being trained may be of a life or death nature, operational performance is of 

utmost importance. 

 

D. VOICE OVER IP (VOIP) TECHNOLOGY 
VoIP is the transportation of speech signals in an acceptable method from sender 

to destination over an Internet network.  The speech signal is digitized pieces of voice 

conversation sampled at regular intervals.  These samples are sent via the network to the 

desired destination where they are reconstructed into an analog signal representing the 

original voice.  In a networked virtual environment, VoIP offers a technology to permit 

live voice between large numbers of networked participants.  In the military, many virtual 

environments simulate training scenarios involving multiple team members working 

together to complete a mission or a task.  If the “real world” task or mission is 

accomplished through voice communications, using text-based messaging for live voice 

communications will be cumbersome and unnatural and will degrade the realism of the 

training system. 
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Using an Internet protocol (IP) network requires the utilization of an IP protocol 

for transmitting the information.  IP networks are sometimes referred to as “packet” 

networks, for they communicate through the sending and receiving of data packets with 

known formats.  Two standard protocols, TCP/IP and UDP are the most widely used 

protocols used today.  All Internet Service Providers (ISP) support TCP/IP.  Everyone 

with a home dial-up Internet account, home Digital Subscriber Line (DSL) account or 

home cable modem Internet account uses TCP/IP for communications with the Internet.  

TCP/IP refers to the format of data that is transmitted over the network and the rules in 

force for ensuring delivery at the desired location.  TCP/IP is considered to be “reliable” - 

reliable means that each individual packet that is sent over the network is verified at the 

receiver and acknowledged.  If the data is larger than a single packet, it would be broken 

down into several individual packets and each transmitted separately.  Packets are 

reassembled in the proper order at the destination prior to delivery to the client’s 

application.  TCP/IP guarantees that packets will be reconstructed at the receiver in 

proper order.  Reconstruction in the proper order is of vital importance to a voice signal.  

Out of order or lost packets will significantly degrade the quality of the transmitted voice.  

However, the processing overhead and delay for this guarantee will significantly increase 

latency in transmission and reconstruction of the voice signals. 

UDP is the second-most widely used IP protocol in use.  Unlike TCP/IP, UDP is 

unreliable.  The UDP protocol does not contain the stringent requirement to acknowledge 

each individual packet.  Packets are transmitted from the sender and essentially forgotten.  

While this reduces the overhead and delay in processing, packets can arrive out of order 

or be dropped from reception completely.  Both of these protocols use an IP network for 

transmission.  IP networks do not guarantee a specific path for delivery of packets 

between sender and receiver.  Each packet may take a different network path.  For this 

reason, UDP is generally considered unsatisfactory for live voice. 

The latest IP protocol developed specifically for streaming audio and video over 

the Internet is Real-Time Transfer Protocol (RTP).  RTP imposes packet sequencing and 

time stamping on a UDP data stream to ensure sequential packet reconstruction at the 

receiver while not imposing the high processing overhead of reliable transmission. 
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The core components of a VoIP system for virtual environments will be slightly 

different from that of a VoIP system designed for other purposes, such as an alternative to 

a telephone.  The primary difference will be the inclusion of spatialization processing for 

the transmitted voice signal.  This section will not address spatialization of VoIP; refer to 

Chapters III and IV for specifics on how spatialization is incorporated into VoIP.  The 

entire process of the core VoIP system is depicted in Figure 6.  The arrows that point 

downward define the path that is followed when sending speech signals; the arrows that 

point upward define the processing sequence when speech signals are received.  When 

the label of a box contains two items, the left one is refers to the sending of speech 

signals and the right refers to the reception of such signals.  They are grouped together 

because they operate at the same level: the right item does approximately the opposite of 

the left one.  

In order to send a live voice across a computer network, the speech signal has to 

be digitized prior to transmission.  In most VoIP applications, the PC sound card 

performs the sampling of the speech signal and conversion to digital information.  

 

 
Figure 6.   VoIP Components. 

  

When a digitized block is received, it has to be transformed back into an audio 

signal.  Like the sampling and digitization for transmission, the transformation is 

accomplished by the receiver’s PC sound card.  The output of the process is played either 
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through speakers or headphones for the listener.  In essence, reconstruction is the reverse 

operation of sampling.  

Several issues have to be considered before transforming the digitized signal.  

First, if multiple persons are allowed to talk at the same time, as would be the case in 

many virtual environment training systems, the speech signals of those persons have to 

mix together at the receiver.  The mixing is also done on the receiver’s PC sound card. 

Second, when sending blocks of data across a network, there will be tiny 

variations in the time it takes each block to get to the destination; unfortunately, these 

variations can become quite large.  The path each packet takes over the network from 

sender to receiver is not controlled by either (assuming an Internet connection between 

sender and receiver).  There is a large body of research into packet flow over distributed 

networks, which will not be a focus of this investigation.  It suffices to say that once a 

packet leaves the sender, control over its path to the receiver and the time it takes to 

arrive at the receiver, is uncontrollable.  The only way to control network flow is to 

control the entire network.  In the case of the Internet, this is impossible.  In military 

training systems, this may actually be possible, if the networked simulation is over an IP-

based network detached from the Internet.  The problem with variation can be seen in the 

following example.  Suppose the voice signal is reconstructed in the exact sequence the 

voice packets are received.  Because of the variation in arrival time due to uncontrollable 

network pathing, it is possible that either the next block has not yet arrived when the 

output of the first one is finished or the blocks arrive out of sequence.  To overcome this, 

the reconstruction scheme purposely creates a delay to allow received packets to 

accumulate.  The accumulated packets can be re-sequenced not in the order of arrival, but 

in the order of transmission.  However, buffering introduces a significant delay in the 

presentation of the voice signal.  

Further complicating the matter, the digitized information requires a certain 

amount of the available bandwidth of the connection.  Sampling and reconstructing the 

speech signal at an extremely high rate is possible, especially with the advances in 

computing technology of recent years.  However, higher sampling rates have a tendency 

to flood the network connection with data packets.  Every network suffers from some 
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limitation in bandwidth.  Simply increasing the sampling rate will not necessarily reduce 

latency and can other detrimental effects on network performance.  In a networked virtual 

environment the voice signal is not likely to be the only data transmitted over the 

network.  Environment state data, participant actions and controlling information must 

continually be sent to maintain a shared state between the separate virtual environment 

users.  All network traffic, including the voice data, must share the bandwidth of the 

connection.  

Very often compression schemes are used to reduce the required bandwidth for 

voice communication.  Compression refers to encoding the information with an algorithm 

that reduces the raw data into smaller pieces.  Several types of compression strategies 

exist.  Some use compression techniques, which are also used on other kinds of data.  

Others are designed specifically for streaming media over the Internet.  These types of 

compression significantly reduce the amount of data that must be transmitted.  However, 

the more intricate and processor-intensive the algorithm used for compression, the greater 

the delay in transmission of the original voice signal.  

Once the compressed blocks with speech data reach the destination, they have to 

be decompressed.  The decompression is very closely related to compression.  It is the 

inverse operation of the compression scheme that was used.  Compression and 

decompression are very important when the network connection is slow, as with dial-up 

connections to the Internet.  

Up to this point, transmission of voice packets has been presented in the form of a 

single sender and single receiver.  In virtual environments, many training scenarios will 

involve many more than two participants.  A growing bandwidth problem is created if the 

sender must individually transmit voice data to all other participants, especially if the 

number of participants is large.  As the number of participants grows, an exponential 

number of paths between participants present itself for transmitting the voice information 

blocks.  Statistically, this is referred to as an O(n2) problem.  Multicasting is IP-based 

protocol where individual machines (users) subscribe to an IP address as if that address 

where another user.  Individual users transmit and receiver from the multicast address.  

The difference in this scheme is that each user receives all data transmitted to the 
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multicast address.  This permits a single transmission of the voice signal and 

simultaneous reception by all users.  Multicasting promises to improve streaming media 

over the Internet by reducing the number of messages sent to large numbers of 

subscribers.  However, multicasting requires modifications to hardware at all of the 

switches and routers within then network path.  Changes that would permit multicasting 

over the Internet have not taken place.  Small-scale networks, where control and access to 

the network hardware is possible, offer the only currently available option for multicast 

use.  

 

E. LIVE VOICE IN VIRTUAL ENVIRONMENTS 

In “Adding Voice to Distributed Games on the Internet”, Bolot and Fosse-Parisis 

(1998) explore several of the issues in adding a spatialized live voice capability to a 

distributed virtual environment.  There is evidence to suggest that this capability and 

audio fidelity may be needed for positive training in certain complex applications, such as 

Close Quarters Combat (Greenwald, 2002).  Greenwald found that verbal 

communications in three of four phases of CQB were evaluated as the highest priority 

auditory cue necessary. 

Echo is a major concern when two or more players join in a live voice session.  

Echo occurs when each participant’s microphone collects not only their voice 

transmission, but also the playback of the other participants.  They analyzed the amount 

of CPU utilization to implement echo suppression or canceling algorithms, and quickly 

deduced that their system (a Pentium II 200 MHz) could easily be overwhelmed simply 

running the computations to reduce echo.  Their conclusion that the most effective, and 

CPU inexpensive, method to reduce echo is to play back voice audio through 

headphones.  Although this study was conducted in 1998, and significant improvements 

have been made in CPU processing power, this is still a valid recommendation.  If live 

voice is played over speakers, echo will always be an issue that must be dealt with.  The 

authors discuss two additional factors that must be taken into account if an accurate 

spatialized live voice session is to be modeled.  The first is the Doppler Effect, which 

depends on the relative speed of the participants.  The Doppler Effect refers to how sound 

waves are affected when the source is in motion.  As a source moves, its velocity affects 
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the speed at which sound waves arrive at a listener.  If the source is moving towards the 

listener, the sound waves are compressed relative to source velocity.  The perceived 

sound at the listener is that the frequency has shifted up from the original emitted 

frequency.  Conversely, as the source moves away from the listener, the sound waves are 

rarefracted relative to source velocity.  In this instance, the perceived frequency emitted 

from the source appears to be shifted down in frequency.  Although the original source 

frequency is never altered, its velocity affects the listener’s perception.  The amount of 

frequency change is dependent on source velocity.  A simple example of the Doppler 

Effect is to listen to a train pass by.  Initially, as the train approaches, the sound of its 

whistle will appear higher in pitch, but fall lower as the train actually passes by the 

listener’s position.  The second is “transmitter directionality”, referring to whether or not 

the speaker is facing you or turned away from you.  Doppler effect need not be calculated 

by the voice “sender”, if some underlying network capability allows for transmission of 

other data as well.  If this capability exists, transmission of data packets encoding the 

player's velocity can be decoded and Doppler processing can be achieved at the receiver.  

However, Doppler processing of live voice is generally not required.  The velocity 

required to perceive the pitch change associated with Doppler is much larger than a 

person can move.  Directionality of the voice, modeling the radiation pattern of the voice 

of the speaker, requires significantly more sophistication.  At a bare minimum, speaker 

orientation and position must be included in network data from sender to receiver.  

Although processing at the receiver increases to add the directional capability, the 

inclusion of directivity as an attribute of live voice need not significantly increase 

network traffic. 

The authors raise the critical issue of synchronization and latency - ensuring that 

the audio and visual presentations are synchronized to a level where the “tolerable de-

synchronization” level is not exceeded.  Although the tolerable level of de-

synchronization is individual-dependent, their findings indicate that there is a generally 

accepted interval of 185 ms or less, where the desynchronization and latency will be un-

noticeable to the user.  The issue here is not overall latency in the networked virtual 

environment.  Any networked virtual environment will have some level of latency due to 

network loading, network transmission path, and other IP-based network issues.  The true 
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issue for live voice is ensuring that the latency in the live voice is no greater than the 

average network latency inherently present in the system. 

Architectural acoustics play a significant role in how live voice is presented in 

virtual environments.  The sound of the live voice should be different depending on the 

virtual location of the speaker.  For example, a voice associated with a participant 

standing in the middle of a field should sound very different than the voice of a 

participant standing in a tiled room.  Reverberation and reflection quality of the 

environment should affect the live voice in the same way if affects ambient sounds.  

However, including or encoding that type of information into the voice data is extremely 

difficult.  As previously discussed, digitizing the voice signal is a time and CPU 

expensive operation that induces latency.  Adding more data, in this case not only the 

voice but the acoustic effect as well, further burdens the digitization, compression, 

decompression and reconstruction scheme.  A superior implementation will incorporate 

architectural acoustics in the same manner as voice directivity.  Utilizing the network 

connection established for the voice signal, simple attribute data packets can be sent from 

speaker to listener to set required parameters on the listener’s machine to achieve the 

requisite acoustical effect.    

Does spatializing the live voice really have any benefit?  Nelson, Bolia, Ericson 

and McKinley (1999) conducted an experiment to determine whether spatializing speech 

in a multi-talker environment aided in detection of a critical phrase.  This was an 

experiment to address the “cocktail party” effect (Yost, Dye and Sheft, 1996).  The 

“cocktail party” effect describes our ability to discriminate between multiple, on-going 

conversations around us.  This is especially applicable in several military applications, 

such as the Close Quarters Combat (CQB) scenario, currently under development at the 

Naval Postgraduate School.  The author's intent was to examine the number of competing 

signals that could effectively be discriminated, and also examine any differences between 

free field and virtual environments.  In their experiment, subjects were exposed to from 

one to eight simultaneous speakers, either spatialized or non-spatialized (Figure 7), and 

speakers were of both genders.   
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Figure 7.   Comparison of Non-Spatially Separated (Left) and Spatially Separated (Right) 

Audio Conditions. (Nelson, Bolia, Ericson, and McKinley, 1999). 
 

The researchers collected data on detection of a critical signal and identification 

of additional information that would emanate from the same source position as the target 

signal.  Spatialization had a significant effect on the identification of the signal.  The 

results suggest that our ability to search an auditory environment for cues is significantly 

improved when those auditory signals are spatialized.  However, their study found no 

advantage when spatializing the speaker’s voices when there were more than six talkers.  

For their study, spatializing voice is most effectively when there are between two and six 

talkers.  Other studies have suggested that the limit on the number of spatialized signals 

that can be identified is much higher.  Regardless, spatialization significantly improves 

signal detection over non-spatialized signals.  

Campbell (2002) conducted an experiment to determine whether spatializing 

messages in a headphone display would improve recognition and response.  He found 

that a listener could accurately respond to spatialized, overlapping messages 47% of the 

time.  When the overlapping messages where not spatialized, listeners could only respond 

accurately 17% of the time.  By spatializing multiple messages, his results indicate a 30% 

improvement in the listener’s ability to discern overlapping messages.  Thus, spatializing 

live voice in a virtual environment can be beneficial.  A virtual training system designed 

to immerse a participant in a military situation where detection of live voice information 

is critical is definitely a candidate for spatialized live voice. 

Nelson’s investigation of spatialized speech signals was primarily based on 

azimuth separation.  Brungart and Simpson (2001) investigated the ability to separate 
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speech signals when spatialized by distance from the listener in the both the near field 

(defined as within one meter of the listener) and far field (greater than one meter).  In the 

far field, interaural intensity difference is negligible, since the distance between ears is 

relatively small compared to the distance between the ears and the sound source.  Like 

Nelson, Brungart and Simpson tested subjects on their ability to discriminate signals and 

indicate the reception of a target speech signal.  The target signal was masked with either 

random noise or other speech signals.  With simple noise, the brain essentially 

accomplished the discrimination between the two primarily by using Signal to Noise 

Ration (SNR).  The authors call this as energetic masking.  When the masking signal is 

speech, the brain made better use of the binaural cues in discrimination.  The authors 

refer to this as informational masking.  Depth of both the target and masking signal was 

varied, but limited to one meter.  Again, this provides a strong argument that if live voice 

is to be added to a virtual environment training system, spatializing the live voice 

enhances the user’s ability to discern voice information coming from different positions. 

These two experiments indicate that spatially separating voices, either by angular 

separate or distance separation, can improve voice audio discrimination among multiple 

sources.  As previously mentioned, a primary scenario where spatialized VoIP could be 

employed would be a virtual CQB exercise.  In typical room clearing CQB environments, 

small groups of individuals move in teams through a building.  Teams may have contact 

with each other, and within a team members remain in close proximity.  Accurately 

representing the speech signals through acoustic spatialization in a virtual environment 

would support training for CQB by creating the same voice audio effects as those found 

in the real world. 
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Perhaps the most important indicator of whether spatialized voice has any benefit 

in a virtual environment is whether or not the participants in that environment feel it 

increases, decreases or has no effect on their awareness of that environment.  Baldis 

(2001) conducted a study of the effects of spatialized voice on participants in a 

teleconference.  In her study, three configurations for used: non-spatial voice audio, co-

located spatialized voice audio (each conference participant's voice audio was played 

through a single speaker mounted on top of the monitor and all speakers were placed near 

each other and adjacent to visual images of the conference participants) and scaled-



spatialized voice audio (individual speakers for each of the conference participants placed 

in a semi-circle around the subject at -60, -20, 20, and 60 degrees relative).  Data was 

collected through the use of tests (memory and comprehension) and post-conference 

questionnaires.  For both the co-located and scaled-spatialized conditions, analyses of the 

findings indicated that subjects were better able to focus on who was speaking and 

comprehend the content of what was said.  Regardless of the visual presentation, the 

subjects indicated a clear preference for the spatialized voice audio. 

   

F. ARCHITECTURAL ACOUSTICS 

Acoustic modeling is important for design and simulation of three-dimensional 

auditory environments.  The primary challenge in acoustic modeling is computation of 

the myriad paths from a sound's source position to a listener's receiving position.  A 

sound may travel from source to listener via a direct path, a reflected path, or a diffracted 

path.  In the real world, sound seldom travels from source to listener along only one of 

these paths.  A sound arriving at our ears generally follows many paths that 

constructively and destructively interfere with one another to create the sounds we hear.  

For example, an omni-directional sound in a room arrives at the listener via theoretically 

an unlimited number of paths.  While there is only one direct path from source to listener, 

the number of reflected paths can be huge.  The sound can reflect numerous times 

between wall surfaces before it arrives at the listener.  Objects in the room can diffract 

the sound, creating new paths of reflection.  To accurately model architectural acoustics 

of a room is very difficult and processor expensive.  Add to that the fact that most rooms 

are not simple cubes but multi-faceted enclosures and the problem of accurate acoustics 

become almost impossible. 

There are three general methods employed to integrating architectural acoustics in 

virtual environment.  The first involves pre-computation of acoustic modeling prior to 

runtime.  Reflections and diffractions are computed for every source and listener position 

possible in the virtual environment and the results can be applied at runtime for a 

dynamic auditory environment.  The second involves auditory ray tracing techniques 

similar to ray tracing in the visual sense.  Large numbers of sound rays are traced from 

source to listener, sound energies are calculated for transmission path length, and the 
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result is available at runtime.  Neither of these methods is truly interactive, since they 

both require pre-computations of the acoustic model.  The quality of the acoustic model 

is directly related to the amount of processing allotted prior to runtime 

A third solution to providing architectural acoustics is numerical modeling.  In 

numerical modeling, the acoustic effect is obtained not by actual mathematical 

computations in complex algorithms, but instead based on numerical input to software 

algorithms that process the sound for a desired effect.  There is not in relation to the 

environment.  The effect obtained is a result of numerical input to the effect algorithm.  

Where do the numerical inputs come from?  In the gaming and entertainment industry, 

the numerical inputs are the result of programmer and audio engineer trial and error.  

Numerical inputs are varied and modified until the desired effect is obtained.  In other 

words, “work the numbers until it sounds right.”  While it seems like this methodology 

might be haphazard, it is the technique most gaming companies have incorporated into 

the sound design.  It is also the basis for how this architecture will attack the problem of 

acoustic modeling.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

28 



III. CURRENT ARCHITECTURE DESIGNS 

A. INTRODUCTION 
This chapter examines three software application programming interfaces (API) 

and one high-end hardware architecture implementation.  The APIs reviewed are all 

either open-source, public domain (GNU Public License) or part of free Software 

Development Kits offered by their respective development companies. 

 

B. OPEN AUDIO LIBRARY (OPENAL) 
OpenAL is a cross-platform audio API designed to provide a software developer 

with a simple, easy to use interface to spatialized audio (available at either 

http://www.openal.org or http://developer.creative.com).  The primary force behind the 

development of OpenAL is Creative Technology, Ltd.  Creative Technology, a company 

based in Singapore, is a global leader in PC entertainment and audio products.  Best 

known for its SoundBlaster and Audigy line of PC sound cards, Creative Technology 

has entered into many joint ventures with PC gaming companies, including Epic Games 

Inc., a partner in the Naval Postgraduate School’s America’s Army project.  Creative uses 

OpenAL as their primary audio programming interface for Win32, UNIX, and Linux 

platforms (Creative does not currently support Mac OS X and provides only minimal 

support for Mac OS 9 and earlier). 

OpenAL is a platform-independent “wrapper” API for operating system on which 

it operates.  For example, on a win32 platform, OpenAL accesses the DirectSound3D 

or DirectSound3D driver.  Platform operating system discovery is automatic in 

OpenAL. 

A few of OpenAL’s capabilities include: 

• Audio Contexts - a context in OpenAL can best be described as an audio 
“situation” - an environment consisting of a listener and sounds.  OpenAL, 
like all audio programming API’s only support one context per machine, 
except in those circumstances where a single computer contains multiple 
sound cards.  In those cases, multiple contexts can be implemented for 
each sound card. 
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• Spatialized Audio - OpenAL supports one listener per context, and as 
many sounds as the host machine memory will support.  OpenAL will 
generally manage whether sounds are processed on the sound card (in 
hardware) or on the host CPU (in software) automatically.  The priority is 
to utilize hardware assets (buffers) first, followed by software.  Most 
sound cards support between 16 and 64 hardware-processed, 
simultaneously playing sounds.  Spatialization of audio is accomplished 
by constructing buffers of sound data - OpenAL currently supports 
multiple audio formats, including PCM wave files and MP3 formatted 
data.  The data is loaded into memory through a simple API call, and the 
API returns a handle to the data for subsequent playing or looping.  The 
developer has control over the how the sound file is played; playing 
looping, stopping and restarting, rewinding are all inherent capabilities.  
Spatialization is accomplished through a simple positioning method that is 
source-specific for each buffer.  The single listener can also be position 
independently of each sound source.  One aspect of OpenAL that is 
different from other audio API’s is the separation of the audio source from 
the audio data.  A source is a buffer that can be positioned - it is not tied 
directly to any single wave file or sound - the source can be positioned and 
any wave file can be played through that source.  While this may 
complicate programming for a beginning audio programmer, this 
distinction is very powerful.  

• Audio Rolloff and Attenuation - OpenAL provides for audio rolloff 
(attenuation of audio sources based on distance from the listener) through 
three different attenuation models - inverse distance, inverse distance 
clamped, and exponential.  Selection of rolloff model is left to the 
developer.  Manual attenuation of sources can be accomplished through 
volume settings specific to each source. 

• Static and Streaming Audio - OpenAL supports both static buffers (buffers 
whose data is loaded completely and stored in memory) and streaming 
buffers (buffers that contain only a portion of the audio data at creation, 
but continually read new chunks of data as specified intervals).  Streaming 
audio permits the application developer to play extremely large wave files 
without the memory of CPU penalty of storage and retrieval.  Control over 
the “feeding” of audio data is exposed to the developer. 

• Pitch Bending or Frequency Shifting - OpenAL supports frequency 
modification of audio sources at execution time.  This is especially 
beneficial when modeling sounds such as automotive engines - the pitch 
of the engine sound can be modified to reflect change in velocity.  

• Doppler Processing - OpenAL supports audio source Doppler effects.  
OpenAL does not calculate audio source velocity and automatically 
modify source frequencies for the Doppler Effect, but manual setting of 
velocity parameters will permit Doppler effect processing.  One 
shortcoming to be mentioned here is that, in its current release, OpenAL 
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does not permit setting of a reference velocity for Doppler calculations.  
OpenAL has “hard-coded” the speed of sound at sea level (in meters/sec) 
as its reference velocity.  This restrains the developer from being able to 
amplify the Doppler Effect.  While from a physically-based modeling 
perspective a developer may not be inclined to change the physical 
properties of a sound, developing audio software from an entertainment 
perspective may require certain audio effects to amplified or diminished.  
OpenAL does not support this.  A typical example is that of a train 
approaching and departing a listener’s position. 

Combining all of the above capabilities into a single, platform-independent API 

makes OpenAL extremely useful.  OpenAL is implemented in many PC gaming engines 

like Unreal, including “America’s Army: Operations” developed at the Naval 

Postgraduate School.  One significant limitation of OpenAL as an audio API is that it 

does not directly support live voice audio.  Live voice audio can be accomplished with 

OpenAL, but requires the use of 3rd -party API’s for voice capture and encoding, network 

transmission of voice data, and decoding.  Once decoded, the voice data could be used as 

an input to an OpenAL streaming buffer and position accordingly to provide a spatialized 

voice effect.  However, the latency induced by this processing limits OpenAL’s utility to 

virtual environments that do not require live streaming voice. 

  

C. DIRECTSOUND3D 

DirectSound and DirectSound3D are audio programming API’s produced by 

Microsoft.  Originally released as individual API’s, they are now integrated and released 

as a core component of Microsoft’s DirectX programming suite, currently in release 

version 8.1 (available at http://www.microsoft.com\windows\directx).  DirectMusic, 

released for the first time in DirectX 8.0, is a new audio programming API that both 

wraps DirectSound3D and introduces several new functionalities. 

DirectSound3D as an API contains all of the functionality of OpenAL listed 

above, with the following limitations: 

• Limited to Wave Files - DirectSound3D only supports wave file PCM 
data in its current release.  While wave files are the audio programming 
industry’s format of choice, this limitation excludes using other types of 
sound data, and may require programmers to obtain additional software 
capable of converting audio files to PCM format. 
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• Integration of Data and Sources - DirectSound3D tightly integrates 
sound data and the buffer through which it will be played.  A static buffer 
can only be loaded with audio data once.  It can be played and 
repositioned, as many times as the developer desires, but it can never 
accept new data.  In OpenAL, different audio data could be played though 
the same buffer.  For streaming buffers, functionality of OpenAL and 
DirectSound3D is equivalent - audio data can be continually fed into a 
streaming buffer and replaced. 

The following lists additional capabilities that DirectSound3D has over 

OpenAL: 

• Audio Effects - DirectSound3D supports seven different types of audio 
effects processing directly within its API - echo, gargle, compressor, 
chorus, distortion, flanger, and a limited reverb.  While these effects are 
relatively simple and not extremely flexible, they do provide the 
programmer with access to a limited range of audio effects without having 
to learn and utilize another API. 

• Live Voice - perhaps the single greatest advantage to DirectSound3D 
over any other API is its integration of live voice.  For those applications 
requiring live voice, DirectX contains a core module, called 
DirectPlay.  DirectPlay supports networking on a client-server or 
peer-to-peer structure.  A sub-component of DirectPlay is 
DirectVoice.  DirectVoice integrates DirectPlay’s networking with 
DirectSound3D’s spatialized audio capability to provide a spatialized 
live voice capability to any programmer.  Currently, DirectVoice will 
support up to 64 live voices in a session. 

DirectMusic is an audio programming API designed to support musicians more 

than application developers, but has added capabilities that game or simulation 

developers may benefit from using.  Some of these include: 

• Multiple Audio Formats - DirectMusic supports multiple audio file 
formats, including MP3, wave and others 

• DLS (Downloadable Sounds) - DLS is a standard for integrating several 
audio files for synchronized playback.  While both OpenAL and 
DirectSound3D can shift frequencies, audio artifacts and distortions 
when the shift is far away from the original frequency will become 
apparent.  DLS permits a programmer to use, for example, three audio 
files - one for low frequency sounds, one for intermediate frequency 
sounds and one for high frequency sounds, and then overlay them as 
necessary during playback.  This precludes high- and low-pitch shifted 
artifacts and can produce much more realistic sounds in this type of 
scenario.  Modeling vehicle engines provides an excellent example of the 
power of this feature.  Three different audio files could represent low 
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RPM, intermediate RPM, and high RPM.  Synchronized overlay and 
playback would preclude frequency-shifting artifacts and produce a 
smooth sounding engine. 

• Separation of Buffers from Audio data - DirectMusic uses the OpenAL 
model of separating a source from its data.  In DirectMusic, a source 
(AudioPath) can be positioned, repositioned and manipulated in whatever 
fashion the developer desires.  Audio data is then placed on the AudioPath 
when it is time to play. 

• Audio Scripting - DirectMusic supports scripting long segments of 
sounds and permits the developer to introduce variability.  This capability 
might enhance training simulations where ambient sound tracks could be 
developed and varied from run to run, without have to re-program audio 
sequences between each execution.  Like OpenAL, DirectX (either 
DirectSound3D or DirectMusic) is a full-feature audio programming 
API capable of delivering an exciting audio experience to the user.   

While DirectSound3D’s interface is the most difficult to learn and understand, 

it offers the most functionality of any audio API available.  It is widely used in the video 

game industry, and has extensive support for programmers through Microsoft’s MSDN 

library, web site and other gaming web sites. 

 

D. EAX 3.0 

EAX Audio Extensions is an audio API produced by Creative Technology to 

induce numerous types of audio effects, including reverberation, occlusion, obstruction, 

and exclusion (available at http://developer.creative.com).  The goal of the API is to 

produce effects equivalent to modeling the acoustics of rooms, buildings, and other audio 

environments.  It does this without the expensive CPU requirements of actually modeling 

geometry and audio ray tracing.  EAX 3.0 is the current release version.  EAX works 

as an extension to an underlying audio API - EAX is currently configured to work with 

both OpenAL and DirectX. 

A few of EAX 3.0 Audio Extension’s capabilities include: 

• Audio Environments - EAX supports both global and source-specific 
audio effects.  Global effects are applied to the single listener in the 
environment, while source specific effects are independently applied to 
audio sources.  EAX permits the application developer to select from 
over one hundred defined preset environments for global effects, and five 
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high level parameters to modify those presets to obtain the type of effect 
the developer desires.  The EAX interface supports the ability to:  

• Set or modify the environment or room size 

• Set or modify the environment or room width or depth 

• Set or modify the environment or room materials.  For example, a 
hardwood floor will reflect a greater amount of sound energy than 
a carpeted floor and a wood wall will transmit more sound energy 
between rooms than a stonewall. 

• Set or modify the environment or room height.  A taller room will 
reverberate more than a shorter room. 

• Audio Source Effects.  As audio sources are moved in the environment, 
EAX can construct three main types of effects to simulate how those 
sources would interact with a listener: 

• Occlusion.  Occlusion is the perceived effect of a listener and an 
audio source being in different rooms.  Depending on the type of 
material separating the listener from the source (which is fully 
modifiable in EAX), a variable amount of sound energy will 
penetrate the separator and arrive at the listener.  EAX permits 
setting of various types of wall or room material. 

• Exclusion.  Exclusion is the perceived effect a listener hears when 
the audio source is not in the same environment but is heard 
through a portal, such as a door or a window.  Exclusion is an 
attenuation of reflected and reverberated sound energy while the 
direct path energy is relatively unaffected.  EAX supports 
modification of parameters to achieve different effects for door or 
window size. 

• Obstruction.  Obstruction refers to the perceived effect when the 
listener and the sound source are in the same environment, but an 
object is between the two.  In this case, direct-path sound energy is 
attenuated, especially at high frequencies, and reflected and 
reverberated sound is left untreated. 

• Multiple Audio Environments and Environmental Morphing.  EAX 3.0 
supports up to four simultaneous audio environments, permitting 
developers to acoustically model multiple rooms.  Additionally, 
environmental morphing blends effects as listeners traverse portal between 
environments for a smooth audio effect. 

Each of the three audio source effects is considered to be a “high level” parameter 

in the EAX API.  Each effect sets or modifies a varied number of “low level” 

parameters in the API.  The application developer has access to and can modify each of 
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the lower level parameters to fine-tune the implementation to achieve a specific audio 

effect.  

EAX can be implemented in any audio application.  Creative Labs has released 

a single API, called the EAX Unified Interface, which permits application 

programmers to write audio software without fear of what type of sound hardware is on 

the user’s machines.  The EAX Unified provides a single API for all versions of 

EAX, and even will disable the effects if the host machine’s sound card does not 

support EAX without terminating the application. 

The most important issue to understand when using EAX is that it does not 

employ true architectural acoustics.  It is strictly a numerical, parameter-based API for 

achieving certain effects.  Experience suggests that numerous iterations of parameter 

tweaking are required to achieve integrated and synchronous effects for an interactive 

application where the listener and sources are in constant movement. 

 

E. SOFTWARE API SUMMARY 

In conclusion, both OpenAL and DirectX are extremely powerful audio API’s 

capable of delivering a rich audio experience.  When combined with EAX, either can 

come quite close to simulating an audio experience that rivals reality.  DirectX module 

API’s are much more difficult to understand and comprehend, and result in a very steep 

learning curve for beginning programmers.  For beginning programmers, OpenAL 

provides an easy to understand API that can familiarize one with the basic of audio 

programming yet still create a dynamic audio environment.  If the application requires 

live voice, DirectX’s DirectSound3D, DirectPlay, and DirectVoice offer the only 

integrated API available.  However, latency in DirectVoice’s live voice stream may be 

too great for some applications. 

 

F. AUDIO RESOURCE MANAGEMENT 
Audio resource management refers to the techniques employed to maximize the 

capabilities of audio hardware while meeting the audio needs of the application.  Any 

piece of audio hardware, from a computer sound card to high-end audio equipment, faces 
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limitations as to how many sound sources it can play simultaneously and what types of 

audio processing it can accomplish.  For purposes of this thesis, audio resource 

management will only address PC sound cards, as the audio architecture presented here is 

centered on the PC as the delivery platform for the virtual environment. 

All sound cards produced today, including Creative Technology’s Audigy 

sound card, contain a fixed number of sound buffers for processing audio data.  Audio 

data can be either statically loaded into a sound card buffer in its entirety or continuously 

streamed into the buffer.  In either case, the number of buffers on the card will limit the 

number of sounds available for simultaneous playback.  Audigy, for example, contains 

sixty-four sound buffers.  Thirty-two buffers exist for 3D processing and thirty-two 

buffers exist for 2D (stereo) processing.  This means that up to sixty-four non-3D sounds 

may be played simultaneously or thirty-two 3D sounds may be played simultaneously (a 

hardware accelerated 3D sound buffer can always play 2D sounds.)  Now, sixty-four 

sounds may appear as a large number, but in actuality it is not, especially in complex 

audio environments such as CQB.  A scheme must be developed to manage which sounds 

are played and, in the event that an attempt to play more sounds than the number of sound 

buffers, determine a priority rule for selectively picking which are the “most important” 

sounds to be played.  DirectSound3D incorporates a technology known as Voice 

Management.  Voice Management automatically prioritizes which sounds are to be 

played based on criteria set forth by the programmer.  In general, the criterion used, 

whether through Voice Management or by manual programmer control, is to select the 

sounds closest to the listener.  In this manner, if a virtual environment had more sounds 

than the PC sound card could support, sounds the most furthest away from the listener 

would be deselected for playback until such a time as the listener moves closer.   

Another issue with audio resource management is how effects are processed.  

Certain types of effects can be processed in the main CPU, such as volume changes, pitch 

or frequency changes, and distance attenuation.  While these types of effects, if produced 

in software, are possible, software processing of audio data is highly expensive and 

induces latency in the overall system.  If all audio effects are processed on the sound 

card, no CPU degradation due to expensive audio processing will occur.  Additionally, 
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some audio effects, such as those produced by EAX, can only be created in hardware 

buffers on the sound card. 

Although the technology of today’s PC sound cards is rapidly evolving, it still 

places a burden on the programmer to manage audio resources.  Programmers may elect 

to use an automatic resource management tool such as Voice Management, or develop 

their own resource management technique. 

 

G. AUSIM3D GOLDSERVER 
Due to the described latency in live voice by any VoIP application or client, 

including DirectVoice, hardware implementations of live streaming voice were examined 

for alternatives to a VoIP application or component client.  The criteria for selection of a 

hardware alternative consisted of the same criteria mentioned previously: utilize COTS 

technology whenever possible; attempt to minimize cost; and ensure the system would be 

compatible with a PC-based virtual environment training system.  Additionally, any 

hardware implementation must be: 

• Compatible with any or all of the API possible solutions discussed in this 
chapter 

• Capable of spatializing the voice signal in three dimensions.  Live voice in 
a virtual environment should act like sounds in a virtual environment, 
emanating from point sources, directionalized and spatialized, and perhaps 
most importantly, movable within the virtual environment.  Voices should 
appear to be coming from avatar representations of the players in the 
shared virtual environment. 
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The search for an alternative hardware implementation was brief; there were only 

two hardware solutions to live streaming voice currently available.  One solution was to 

connect separate virtual environments training systems with a simple telephone 

connection for live voice.  While fairly easy to implement - telephones with headset jacks 

could be routed to each location in a shared virtual environment for live voice 

communications between participants.  However, a telephone-type communications 

system would be unable to spatialize the voices to co-locate them with their avatar 

“owners”.  The only remaining solution found was the Ausim3D GoldServe Audio 

Localizing Server System, produced by Ausim3D of Los Altos, California 

(http://www.ausim3d.com).  



The GoldServe is capable spatializing live voice with an advertised latency of 5 – 

10 ms, virtually imperceptible to the participants.  Characteristics such as distance 

attenuation, rolloff, and source directivity are additional capabilities of the Ausim3D 

GoldServe.   

There are two main limitations to the GoldServe when implementing it as the live 

streaming voice solution.  First, the GoldServe only supports headphone audio.  Virtual 

environment audio delivery systems range from loudspeakers to headphones to 

combinations of both.  Research at the Naval Postgraduate School by Scorgie and 

Sanders (2002) suggest there is a relationship between the sense of presence and 

immersion in the virtual environment and the selection of which type of audio delivery 

system.  Their initial findings indicate that loudspeakers are superior to headphones in 

providing the user of the virtual environment with a sense of presence and immersion.  

Further study is warranted, but a virtual environment capable of delivering audio only 

through headphones may face a limitation on its immersive capability.  They also 

examined whether an audio delivery system combining a subwoofer with headphones had 

any effect on the sense of presence.  Their findings suggested no effect on presence for 

this treatment.  
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Second, the GoldServe Audio Localizing System requires the co-location of the 

individual virtual environment trainers or simulators.  The GoldServe, while network 

capable for accepting audio commands and data, does not support an IP-based audio 

delivery system.  The GoldServe, as part of a multiple participant virtual environment, 

requires that each of the participants be directly connected to the GoldServe hardware 

through standard headphone cables and headsets.  This limitation precludes an 

implementation for a scenario where the multiple participants are distributed across a 

wide area or large network.  Additionally, the GoldServe, depending on its configuration, 

will only support a fixed number of participants.  The GoldServe system used as part of 

the development of the audio architecture for this thesis is limited to four active listeners.  

It is a single processor system.  Individual GoldServe systems can be upgraded to dual 

processors, in which case the number of listeners double to eight.  Additionally, chains of 

GoldServes can be constructed to permit creation of large numbers of listeners necessary 

for any particular application.  For example, four dual processor machines could support 



up to 32 listeners.  Naturally, purchasing a dual processor Ausim3D system or multiple 

systems will provide a greater number of listeners (users), but the number will still 

remain fixed.      

Even in light of these limitations, for those virtual environments involving 

multiple, physically co-located participants, the GoldServe is the best solution for 

providing live streaming voice available.  Considering that many military virtual 

environment training systems are being designed to deploy onboard ship for individual or 

team training, the GoldServe is an extremely viable solution.  Onboard ship, teams of 

virtual environment users will likely be co-located with potentially severe space 

limitations.  It is likely that each simulator will not be able to capture enough space for 

setup of a loudspeaker audio delivery system considering the limited space requirements.  

Headphone delivery systems may be the only solution to deployable virtual environment 

training systems.  Additionally, the physical co-location of the users matches the 

GoldServe limitation on distribution of users.  For other implementations, where 

participants are distributed across a wide area or network, VoIP remains as the only 

viable solution for providing live voice.       

Future upgrades to the Ausim3D GoldServe will implement a broad range of 

room acoustic modeling capabilities.  When these upgrades are complete, the GoldServe, 

combining spatialized, live voice with a run-time room acoustics processing capability, 

will be the premier audio system for developing fully interactive, multi-participant virtual 

environment training systems and simulations. 

 

H. OVERALL SYSTEM ARCHITECTURE 
The audio architecture described in this section is meant to cover many different 

possible implementations in virtual environments and is a general overview.  Specific 

implementation for each of the software components is found in Chapter IV.  It can be 

described as a “tool box” of hardware and software components that can be arranged and 

combined in different ways for different virtual environment training systems, including: 
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• Single independent user 

• Multiple physically co-located users 

• Multiple distributed users 

The audio architecture is subdivided into two sections, a core component found 

on all implementations, and a live voice component, from which the virtual environment 

training system developer will select one of two options for implementation. 

The core component of the audio architecture is a combination of 

DirectSound3D and EAX software implemented on each system.  Other than live 

voice, each system, whether connected to others or not, is responsible for generating all 

sounds and sound effects heard by the user of that system.  This core component supports 

all three implementation options described above, and is in compliance with the 

requirement that the audio architecture be COTS technology, low cost, and PC-based.  

Virtual environment audio is generated locally through the PC sound card.  Even when 

connected to other virtual environment participants, sounds for remote users are 

generated locally by exchanging network packets with pre-formatted audio data.  Each 

user’s system will contain a library of necessary audio files for playback of all sounds 

potentially heard in the virtual environment.  The core component is a software-only API 

designed to be compatible with a standard PC.  Specific implementation details are found 

in the next chapter. 

For single, independent users, only the core component of the audio architecture 

is implemented as shown in Figure 8.  The core component can meet all of the audio 

requirements for a single-user virtual environment. 
 

 
Figure 8.   Single Independent User Audio Implementation. 
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For multiple, physically co-located users, the audio architecture will contain the 

core component and the Ausim3D GoldServe (Figure 9).  In this case, DirectSound3D 

and EAX will provide all sounds and sound effects for each user on his or her 

individual system.  An IP network connection between users will provide a data path for 

transmission of audio data relating to remote participant sounds and actions that generate 

sounds.  Audio generated by each individual system’s sound card will be routed and 

connected to the GoldServe as a live audio feed.  Since spatialization of audio for sounds 

and sound effects has already been processed on the individual user’s systems, there is 

not requirement for additional processing on the GoldServe, other than a simple stereo 

separation of audio channels from the individual PC systems.  Each user’s system is 

connected via two standard ¼” audio cables, left and right audio channels from the 

individual system sound card, to the GoldServe and the channels are panned left and right 

respectfully.  Each user’s microphone is also connected as a live voice input to the 

GoldServe, and spatialization processing is completed by the GoldServe to match the 

situation in the virtual environment.  A separate PC system connected to the IP network 

will function as an audio server, connected to the GoldServe via a RS-232 data cable to 

provide the GoldServe with positioning information for all users in the shared virtual 

environment.  The server may be one of the participants in the shared virtual 

environment, or another PC acting solely as a central connection point between the IP 

network of virtual environment users and the GoldServe.  When possible, it is 

recommended that a stand-alone system be employed as the audio server for the 

GoldServe.  Virtual environment graphics can be very CPU intensive to process, and 

requiring one of the user systems to additionally serve as the audio connection to the 

GoldServe may induce processing latency in the display. 
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Figure 9.   Multiple, Physically Co-Located User Audio Implementation. 

 

When multiple users are not physically co-located and distributed over a wide 

area, the audio architecture will contain the core component and use DirectVoice for 

live streaming voice (Figure 10).  In this instance, no audio server is required for 

connection to any additional hardware.  DirectVoice, using DirectPlay as its 

networking layer beneath streaming voice signal, is established either in conjunction with 

a data network for the simulation or as a stand-alone connection only for the voice 

stream.  The DirectPlay network should be established as a peer-to-peer connection, 

meaning that each participant in the network transmits data to each of the other 

participants.  DirectPlay and DirectVoice support up to sixty-four simultaneous users 

in a shared virtual environment. 

The benefit of this architecture is that the voice stream, DirectSound3D 

streaming sound buffers reserved for live voice signals, can be processed by EAX for 

sound effects like other sounds in the environment.  Occlusion, obstruction, exclusion 

and reverberation are effects that can be applied to voice streams just as they can be 

applied to other sounds in the environment.  The principle limitation of this architecture 
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is the latency in the voice signal, as discussed.  Chapter V outlines an experiment 

conducted to measure and compare the latency in live streaming voice between the 

GoldServe and DirectVoice under various network-loading conditions.  If multiple 

users of a shared virtual environment must be distributed and cannot be co-located, VoIP 

currently offers the only solution for live streaming voice.  Training system designers 

must address whether the latency in the live voice stream is acceptable or unacceptable.  

If unacceptable, alternatives, such as text-based messaging, can be implemented for real-

time communications between users. 

 

 
Figure 10.   Multiple Distributed User Audio Implementation. 
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IV. VOICE LATENCY ANALYSIS 

A. INTRODUCTION 
Latency has been shown to be a critical issue in live voice in virtual 

environments.  The latency in live voice can arise from several areas, including network 

latency and audio compression. 

Network latency is induced when the IP-based network is heavily burdened with 

transmitting a high amount of data packets.  The level of network traffic will vary 

depending on network configuration.  Depending on virtual environment network design, 

network latency can be extremely severe and significantly add to latency in both data 

transmission and the live voice signal 

Latency in live voice can also be induced at the source through a process known 

as compression.  Live voice, like any live audio input, is generally sampled at a known 

rate and digitized into text or binary data for transmission across the network in 

standardized data packets.  Numerous compression schemes have been created to lower 

the sampling rate, package more data into each voice packet for transmission over the 

network, and decode the network voice packets at the receiver.  Compression, while 

attempting to reduce the number of voice data packets to limit network loading, induces 

latency by storing data about the voice signal over a small period of time before 

packaging and transmission.  Depending on the selected compression algorithm, this 

small amount of time can be very noticeable to live voice users in a virtual environment, 

especially when the virtual environment displays a graphical image for users to compare 

with the voice signal.  Without a graphical display, users would not easily determine that 

the voice signal delay was latency as opposed to human delays in speaking.  However, in 

virtual environments where the graphical display and the audio display must be highly 

synchronized, latency in voice can be very obvious.  At best, the latency can be 

distracting; at worst, it can significantly decrease immersion and training effectiveness. 
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B. EXPERIMENTAL DESIGN 

 

1. Apparatus 

To control the type and quality of the audio signal being used for testing, both 

between the Ausdim3D GoldServe and DirectVoice and within each run for each 

implementation, the decision was made not to test an actual live voice.  Instead, a 1000Hz 

tone would be generated and pulsed through each system.  The 1000Hz frequency was 

selected as it falls within the normal voice range of frequencies, from 500 Hz to 2000Hz.  

To generate the pulse, a Hewlett Packard 8015A Pulse Generator was employed.  The 

8015A Pulse Generator is capable of delivering single, burst, or continuous pulses of 

audio from one nanosecond to one hertz. 

To view the output of each implementation’s test runs, a Tektronix TDS 3012 

Digital Phosphor Oscilloscope was utilized.  With the capability to simultaneously 

display two signals (pulse and resulting audio signal from receiver), the oscilloscope 

could provide a graphic display of the original pulse and the resulting received signal.  

The signal from the pulse generator was routed to the oscilloscope.   

 

2. Procedures 

The Ausim3D GoldServe has its own internal latency measurement software, but 

this option was not utilized.  The testing software only measures the latency of the signal 

during processing on its own sound card.  While this is the bulk of latency on the 

GoldServe, it cannot be considered as a complete measurement as it does not take into 

account latency in the signal path through other hardware components.  

For the Ausim3D GoldServe, a simple test application was developed to create 

two listeners, each with a live voice channel.  For the test, the output of the pulse 

generator was connected to the microphone (live voice) input and the headphone output 

was connected to the oscilloscope for display.  Twenty-three individual runs were 

completed, each with a single audio pulse.  Individual run graphic outputs were saved and 

are shown in Appendix C. 
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Early in the test, an attempt was made to vary the listener positions to determine if 

it had an effect on latency of the voice signal.  It was quickly determined that the 

GoldServe implements an algorithm to calculate time of arrival using the standard speed 

of sound to delay audio based on distance from virtual source to virtual receiver.  This 

capability was under development by Ausim3D, but not specifically listed in the product 

documentation.  DirectVoice does not support time of arrival delay in its audio 

processing.  Therefore, to ensure that no additional latency in the received signal was due 

to the GoldServe’s distance delay algorithm (which is not latency but an attempt to 

reproduce sounds more realistically by modeling time of arrival and distance delay), 

positions were varied in three dimensions but limited to no more than one meter of virtual 

separation. 

An equivalent procedure was employed to test DirectVoice latency.  In this 

case, the pulse generator was connected to one PC’s sound card microphone input and the 

oscilloscope was connected to the headphone output of a second PC.  A DirectVoice 

connection was made between the two PCs, and thirty measurements were taken.  

Graphic results can be seen in Appendix C.   

  

C. RESULTS AND ANALYSIS 
The numerical results of the experiment are summarized in Table 2.  

 

Treatment Average Latency Standard Deviation 

VoIP – DirectVoice 205 15.2 

Hardware – GoldServe 13.1 0.2 

 
Table 1.   Average Latency Measurement in Milliseconds. 

 

The results indicate a large difference in the latency of the GoldServe’s live voice 

implementation compared to DirectVoice’s implementation.  Two points must be made 

before the analysis.  First, the GoldServe is not subject to network delays or heavy 

message loading.  As seen back in Figure 9, the network connection for transmitting 
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virtual environment state data is not even connected to the GoldServe.  The GoldServe is 

connected to the network via a “repeater” node - a computer not serving as one of the 

participants in the simulation.  Therefore, factors that could affect network performance 

will not affect the GoldServe audio processing or the live voice latency.  The measured 

GoldServe latency would stay relatively constant, regardless of other requirements placed 

on the virtual environment network.  Second, the DirectVoice VoIP implementation 

will be affected by network performance.  If the state information necessary to maintain 

the virtual environment burdens the network with heavy message flow, either voice 

latency will increase or voice quality will degrade as increasing numbers of voice data 

will be lost or reconstructed out of sequence. 

In other words, the average latency measurements must be viewed differently.  

The GoldServe average latency, 13.1 ms, can be seen as an average under virtually any 

network loading condition.  The DirectVoice latency average, 205 ms, should be seen 

as a best-case scenario.  The scenario is best case in that the DirectVoice connection 

was only between two computers, and no burden was placed on the network connection 

to support a significant level of virtual environment state information transmission.  If the 

numbers of participants were to grow or the level of network transmissions were to 

increase, either as a result of more participants or a requirement to transmit additional 

state information, the latency would increase. 

Returning to the discussion of synchronization in a virtual environment, Bolot and 

Fosse-Parisis (1998) determined that a de-synchronization between the audio and visual 

presentations in a virtual environment should not exceed approximately 185 ms.  If de-

synchronization is greater than 185 ms, it will become noticeable to the user and 

distracting from the environment.  In a military virtual environment training system, 

where the subject matter being trained in the virtual environment may crucial to real 

world life and death situations.  If the users are distracted during the training due to 

latency in voice communications, it may have a detrimental effect on the battlefield.  The 

GoldServe’s latency measurements fall far below this threshold.  The VoIP 

measurements, remembering that they are best case, exceed the threshold, and will likely 

exceed it further as the training system becomes more complex with more participants.  
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The GoldServe solution to live voice is vastly superior to a VoIP live voice 

implementation. 

 

D. SUMMARY 
From the results and analysis, it is shown that a VoIP implementation of live 

voice in a virtual environment will have a significantly higher level of latency than a 

hardware live voice implementation like that found in the Ausim3D GoldServe.  Voice 

latency greater than 185 ms will not only be noticeable to users, but potentially 

distracting and detrimental to training.  The GoldServe’s superior latency measurements 

indicate it is the best solution for live voice.  Only in those situations where the 

networked virtual environment participants cannot be co-located should VoIP be utilized 

for live voice.  It is speculated that whether an application requiring live voice will suffer 

from some level of training degradation due to voice latency is highly application 

specific.  For example, the extremely complex CQB environment described by 

Greenwald (2002) requires live voice in virtually every phase of operations.  CQB, by its 

very nature, is an extremely rapid and volatile activity.  Verbal communications between 

team members is quick, precise, and demands immediate response.  If a virtual 

environment training system employs a high-latency live voice sub-system, the latency 

may not only degrade the verbal communications, but also contribute to operational 

mistakes of a potentially life-threatening nature.  In the real world, military members 

executing a CQB mission would never accept a radio communications system that 

induced potentially deadly delays in critical communications.  However, other training 

activities may not suffer at all.  For example, a virtual ship-handling environment 

designed to simulate two or more vessels working together may not seriously suffer from 

latency in simulated radio communications.  The need for low latency live voice has been 

demonstrated, but is not always applicable for every training system.  Determining which 

types of applications require low latency live voice and those that can accept a higher 

level of latency bears further analysis. 
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V. SOFTWARE IMPLEMENTATION 

A. INTRODUCTION 
This chapter provides a specific implementation in software for two APIs.  The 

first, gfAudio, combines DirectSound3D and EAX into s single API capable of a 

fully immersive auditory virtual environment.  The second, auServerLib, is an API 

capable of accepting an external network connection to a multi-user, shared virtual 

environment and communicating with the Ausim3D GoldServe hardware for live voice.  

Both were developed to work in conjunction with gfLib, a virtual environment-authoring 

library developed at the Naval Postgraduate School by Erik Johnson.  Due to licensing 

requirements for other virtual environment authoring libraries, such as Vega from 

MultiGen Paradigm and Unreal from Epic, gfLib provided a high-quality, open-source 

graphics library that could be used to test the implementation of both gfAudio and 

AuServerLib.  Although there are specific methods, variables and functions that permit 

gfAudio to efficiently integrate into a gfLib application, with little modification gfAudio 

can be separated into a stand alone API for use with any virtual environment authoring 

library.  AuServerLib is constructed to work with any type of networked virtual 

environment.  Both libraries were constructed using standard object-oriented 

programming design principles. 

AuServerLib was constructed to be more than simply a “connection” protocol for 

external networked virtual environments to communicate with the Ausim3D GoldServe.  

It is designed to be a fully functional API capable of exploiting all functionalities of the 

GoldServe, and can be used to construct many different types of applications.  The 

auServerLib API can be used for such applications as audio or voice testing, or single- or 

multiple-user acoustic environments.  Although in the architecture described for virtual 

environments in this thesis only utilizes the GoldServe for live spatialized voice, the 

auServerLib API is capable of integrating pre-recorded wav files and live input channels 

into any virtual environment. 

In the next two sections, each of the libraries main source code and 

implementation details is examined.  The core functions and architecture are described as 
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to how each class accomplishes it role within the libraries.  Appendices A through D 

provide complete documentation and source code for further reference.  The following 

typeset convections are used: 

• Courier new text will indicate source code.  For example, a portion of 
source code contains: EAXDirectSoundCreate 

• Bold text will be used for software objects created as interfaces to either 
DirectSound3D or EAX internal source code or methods.  For 
example, an object will appear as: IDirectSound 

B. GFAUDIO 
 

1. gfAudioGlobal 

The gfAudioGlobal.h and gfAudioGlobal.cpp files contain methods to initialize 

both DirectSound3D and EAX.  Initialization is accomplished as depicted in Figure 

10: 

 
 if( FAILED( hr = EAXDirectSoundCreate( NULL, &pDS, NULL ) ) ) 
  
 . . . 
 if( FAILED( hr = pDS->SetCooperativeLevel(  
  (HWND)win->GetGZWindow()->getHandle(), DSSCL_PRIORITY ) ) )  

 
Figure 11.   DirectSound3D and EAX Initialization Code. 

 

The EAXDirectSoundCreate method creates an interface object of type 

IDirectSound, which is the primary interface in DirectSound3D with the host 

machine’s sound card.  The IDirectSound object is used to create all other interfaces in 

DirectSound3D.  Setting the cooperative level to DSSCL_PRIORITY permits 

DirectSound3D to share resources on the sound card with other applications running on 

the host machine.  Like other windows-based applications, DirectSound3D uses a 

“window focus” design where sounds associated with a particular application window 

will only be heard through the sound card when the application window has the focus on 

the desktop. 

Once the IDirectSound3D interface is constructed, the primary buffer for all 

sounds is created: 
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  if(FAILED( hr = pDS->CreateSoundBuffer(&pBufDesc, &pDSBPrimary,  
   NULL))) 
  . . . 

 
Figure 12.   Creating the Primary Sound Buffer. 

 

The primary sound buffer, pDSBPrimary, can be thought of as the final mixer 

and combiner of all sounds playing simultaneously in the audio environment.  The 

primary buffer format can be set to accept pre-recorded sounds with different sampling 

rates; generally accepted sampling rates are either 22050 Hz or 44100 Hz.  Most 

commercially available recording software packages contain options for recording at 

these and other sampling rates. 

The gfAudioGlobal files contain a sub-class named gfAudioNet, which is 

designed to play sounds in a networked, shared virtual environment.  For example, in a 

two-person shared virtual world, when either participant initiates an action that produces 

a sound, the other participant should be able to hear that sound as well, taking into 

consideration such conditions as distance between users in the environment and the 

presence of obstacles or obstructions.  When a developer determines that a sound should 

be able to be heard between users or participants, gfAudioNet automatically receives the 

notification to play a remote user’s sounds on a local user’s machine.  It is assumed that 

in a networked, multiple user virtual environment, each user has access to the same 

library of stored, pre-recorded wav files.  Beyond the presence of the pre-recorded wav 

file, individual user’s applications do not have to be configured for every time of sound 

that other user’s may initiate.  The gfAudioNet class automatically discovers the name of 

the remote sound, creates the necessary gfSoundObject associated with the sound, and 

plays it according to specifications.  Once created, these sound objects are stored for later 

use. 

  
2. gfListener 
The gfListener class is responsible for acting as the ears of the observer in the 

virtual environment.  As in the real world, the listener’s location and orientation are 

dynamic and moveable.  The portion of the source code responsible for listener object 

creation is shown in Figure 12.  After gfAudioGlobal initializes DirectSound3D and 
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creates the primary buffer, the primary buffer is used to create and obtain an interface to 

the DirectSound3D IDirectSound3DListener object, which is a software interface to 

permit setting of listener properties that affect all sounds and the global audio 

environment. 

 
 if(FAILED( hr = pDSBPrimary->QueryInterface(IID_IDirectSound3DListener,  
  (void**)&pDSListener)))  
 . . .  
 if(FAILED( hr = pDS->CreateSoundBuffer(&sndBufferDesc, &pDSB, NULL))) 
 . . . 
 if(FAILED(hr = pDSB->QueryInterface(IID_IDirectSound3DBuffer,   
  (void**)&pDSB3D))) 
 . . . 
 if(FAILED( hr = pDSB3D->QueryInterface(IID_IKsPropertySet,    
  (void**)&pEAXListener))) 
 . . . 

 
Figure 13.   gfListener Configuration Source Code. 

 

The IDirectSound3Dlistener object, pDSListener, is essentially software 

“ears” of the user in the virtual environment.  Methods in the gfListener class permit 

setting the location, orientation and elevation of the listener.  Orientation is particularly 

important in that it allows for 3D spatialization of sounds in the environment to occur.  

For example, if the listener’s head orientation changes, such as rotating the head from 

looking forward to looking to the left, sounds originally emanating from forward of the 

listener will not appear to the right. 

Figure 12 also shows the creation of other DirectSound3D objects, including 

creating a sound buffer, creating a 3D sound buffer and creating an interface to an EAX 

property set, pEAXListener.  The sound buffer and 3D sound buffer are only 

created to obtain the interface to the EAX property set, and then discarded.  EAX 

property sets are software objects and interfaces used to set EAX values.  They are 

standardized methods using standardized variables for creating such effects as 

environmental reverberation.  EAX property sets are created for the listener and each 

individual sound object in the environment.  Effects set through the listener’s EAX 

property set are global in nature; they apply to all sounds in the environment.  It is 

analogous to applying a sound effect filter in our ears - every sound arriving at our ears is 
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filtered for the given effect.  An example of setting a global environmental effect, such as 

the listener being positioned inside a sewer pipe, is shown in Figure 13.  EAX contains 

over 100 preset acoustic environments for software developers to use to create acoustic 

effects in virtual environments.  EAX 3.0 has expanded the number of presets to over 

one hundred different acoustic environments. 
 EAXLISTENERPROPERTIES env = EAX30_PRESET_SEWERPIPE;  
 if(FAILED( hr = pEAXListener->Set(DSPROPSETID_EAX_ListenerProperties,  
  DSPROPERTY_EAXLISTENER_ALLPARAMETERS, NULL, 0, &env,    
  sizeof(EAXLISTENERPROPERTIES)))) 
 . . .  

 
Figure 14.   Setting an EAX Property for the Listener. 

 

The gfListener class contains other methods to permit the following: 

• Tethering the listener to an object.  The listener can be “tied” to an object 
in the virtual environment for automatic position and orientation updating.  
In most cases, the object to tether a listener to is the observer in the 
environment, which represents the user.  In most virtual environment 
development libraries, including gfLib and Vega, an observer is 
considered to be the “eyes” of the user.  Tethering the ears to the eyes of 
the participant is naturally expected. 

• Doppler Effect settings.  For a natural Doppler effect, velocities of the 
listener and the sounds in the environment must be known.  
DirectSound3D does not automatically calculate velocity by measuring 
change in position; the developer must manually set the velocity.  A 
simple algorithm to measure distance change over time determines 
velocity.  Additionally, the Doppler Effect can be exaggerated.  In many 
instances, a developer may want to exaggerate the Doppler Effect to make 
it more noticeable to the user.  The gfListener class contains a method to 
set a factor that either over- or under-exaggerates the Doppler effect, based 
on developer preference and design. 

• Rolloff and distance calculations.  In addition to head orientation, distance 
from source to “ears” is the other primary characteristic by which we 
discern spatialization of sounds.  The gfListener class permits a developer 
to either over- or under-exaggerate the global attenuation of sounds as 
they move further away from the listener.  In certain virtual environment 
scenarios, the exaggeration may be required to provide the desired 
attenuation “feel” for distance and near sound sources. 

 
 
 
 
 

55 



3. gfSoundObject 

The gfSoundObject class represents a sound in the virtual environment.  This 

class has the capability to load, locate, play, and loop pre-recorded audio files using the 

wav audio file format.  Additionally, gfSoundObject contains methods to set sound-

specific effects, such as occlusion, obstruction and exclusion.  These effects are rendered 

through the integration of EAX with DirectSound3D.  EAX, to create these types 

of effects, just obtain hardware resources on the host machine’s sound card.  EAX 

processing is only permitted in hardware; thus, if the host machine’s sound card does not 

contain the necessary sound buffers for EAX processing, EAX effects will not be 

processed nor heard.  Most sound cards produced today, such as Creative Labs Audigy 

and SoundBlaster series audio cards, contain between 16 and 64 hardware buffers on the 

sound card itself, permitting EAX processing for an equivalent number of sounds in the 

environment.  However, limiting a virtual environment to between 16 and 64 sounds 

significantly limits the environment’s ability to provide a rich and fully immersive audio 

environment.  The gfSoundObject class overcomes this limitation by dynamically obtain 

sound card hardware resources only when a sound is playing or looping.  Upon 

completion of the play or loop sequence, the buffers on the sound card are released and 

resources are returned to the operating system.  In this manner, the only limit on the 

number of sounds in the virtual environment is the number of simultaneously playing 

sounds, still limited to between 16 and 64, depending on sound card hardware resources.  

However, an unlimited number of gfSoundObjects can be created and stored for 

playback. 

The gfSoundObject, unlike the gfListener, does not create the necessary 

DirectSound3D and EAX software objects at instantiation.  Instead, the 

DirectSound3D and EAX interfaces are created only through a method call to play or 

loop a sound.  Obtaining the necessary hardware resources to play or loop a sound are is 

show in Figure 14. 

 
if(FAILED( hr = pDS->CreateSoundBuffer(&m_DSBufDesc, &pDSB, NULL))) 
. . . 
if(mType == GF_3D) 
{ 
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 if(FAILED(hr = pDSB->QueryInterface(IID_IDirectSound3DBuffer, (void **)  
  &pDSB3D))) 
 . . . 
 if(FAILED(hr = pDSB3D->QueryInterface(IID_IKsPropertySet,    
  void**)&pEAXSource))) 
 . . . 
 if(FAILED(hr = pEAXSource->QuerySupport(DSPROPSETID_EAX_BufferProperties, 
  DSPROPERTY_EAXBUFFER_ALLPARAMETERS, &support))) 
 . . . 
 if ( (support & (KSPROPERTY_SUPPORT_GET | KSPROPERTY_SUPPORT_SET)) !=  
  (KSPROPERTY_SUPPORT_GET | KSPROPERTY_SUPPORT_SET)) 
 . . . 

 
Figure 15.   gfSoundObject Obtaining Resources for Play or Loop. 

 

First, a DirectSound3D hardware buffer, pDSB is created using the 

IDirectSound object created in gfAudioGlobal.  The pDSB object is a DirectSound3D 

IDirectSoundBuffer object that acts as the final mixer for any effects, such as 3D 

spatialization, EAX effects, or pitch and volume changes for the sound.  To permit 

spatialization, an IDirectSound3Dbuffer is obtained, pDSB3D.  Like the gfListener, an 

EAX property set, pEAXSource, is created for the occlusion, obstruction, and 

exclusion effects processing.  Unlike the gfListener, EAX effects processed by an 

individual gfSoundObject are only for that sound; the effect is considered to be source 

specific. 

When it comes time to play the sound in the virtual environment, the process of 

obtaining resources, setting parameters and effects, and locating the sound in 3D is 

accomplished as depicted in Figure 15. 

 
if(!loop) ReleaseResources();  
. . .  
if(!ObtainResources())         
{ 
 CheckPlayingSounds();      
 if(!ObtainResources()) return; 
} 
if(pDSB )                       
{ 
 if(mType == GF_2D )        
 { 
  SetPan(mPan); 
 } 
 if(pDSB3D)                 
 { 
  pDSB3D->SetMinDistance(mMinDistance, DS3D_DEFERRED  ); 
  pDSB3D->SetMaxDistance(mMaxDistance, DS3D_DEFERRED  );  
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  pDSB3D->SetConeOrientation(mConeDirection[0], mConeDirection[1],  
   mConeDirection[2], DS3D_DEFERRED ); 
  pDSB3D->SetConeAngles(mMinConeAngle, mMaxConeAngle,  
   DS3D_DEFERRED ); 
  pDSB3D->SetConeOutsideVolume( (long)mOuterConeVolume,   
   DS3D_DEFERRED ); 
  if(mRel)               
  { 
   pDSB3D->SetMode(DS3DMODE_HEADRELATIVE, DS3D_DEFERRED  );  
  } 
  else                   
  { 
   pDSB3D->SetMode(DS3DMODE_NORMAL, DS3D_DEFERRED  );  
   pDSB3D->SetPosition( mPosition->X(), mPosition->Y(),   
    mPosition->Z(), DS3D_DEFERRED  ); 
   SetOcclusionSettings(); 
   SetExclusionSettings(); 
   SetObstructionSettings(); 
   if(g_gfListener) g_gfListener->CommitDeferredSettings(); 
  } 
 } 
 if (loop) 
 { 
  pDSB->Play(0, 0, DSBPLAY_LOOPING); 
  if(isNetworked) Send(GF_LOOP); 
 } 
 else 
 { 
  pDSB->Play(0, 0, 0); 
  if(isNetworked) Send(GF_PLAY); 
 } 
 SetPitch(mPitch); 
 SetVolume(mVolume); 

 
Figure 16.   Playing a Sound with gfSoundObject. 
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When a sound is played, the gfSoundObject first determines whether the desire to 

play the sound one time or to continuously loop the sound.  If the sound is to be played 

once, any resources obtained for a previous play are released.  This precludes multiple 

hardware buffers being obtained from the sound card for a single sound.  This is not 

required for a looping sound.  Since looping sounds will play continuously until an overt 

action terminates the sound, the termination will release the resources upon stopping the 

looping sound.  For a single play, there is not overt method call or action that terminates 

play; thus, for single-playing sounds, the release of previously held resources ensures 

optimum usage of precious hardware resources on the sound card.  The gfSoundObject 

then attempts to obtain the necessary hardware resources.  If it is successful, it continues 

through the remaining stages of the method.  If not, the gfSoundObject, through the 

CheckPlayingSounds() method, runs through a global list of all sound objects to 

determine if any gfSoundObject that currently is holding resources on the sound card has 



completed playing.  If so, it releases those resources, returning those sound card resources 

to the operating system for usage elsewhere.  Upon completion of the 

CheckPlayingSounds() method, the gfSoundObject once again attempts to obtain 

hardware buffers on the sound card.  If successful on this second attempt, processing 

continues.  If not, the method is aborted and the sound is not played.  In this case, the 

decision as to how to handle playing the respective sound is left up to the application 

developer - this case can only arise when the developer is attempting to play more sounds 

than the sound card hardware will support.   

The gfSoundObject class contains the functionality to permit directivity of a 

sound.  Directivity refers to sounds that emit energy in a specific direction instead of 

emitting energy omni directionally.  Figure 16 shows a directional sound source.  The 

volume of the inner cone and outer cones and direction of sound emanation are 

controllable by the developer.  The volume of the sound source in the transition zone is 

automatically calculated by DirectSound3D, attenuating from the level in the inner 

cone to the outer cone linearly. 

 
Figure 17.   Directional Sound Source. 

 

Processing continues by setting all of the stored characteristics of the sound - 

position, directivity (cone), minimum and maximum distance, and occlusion, obstruction 

or exclusion effects.   
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The gfSoundObject class allows for two general types of sounds in the 

environment - 2D or 3D sounds.  2D sounds are those that are not spatialized in three 

dimensions.  Sounds that are 2D are always rendered as if they are located at the 

listener’s position.  These sounds can only be panned left or right.  Panning refers to 

separating the left and right stereo channels and applying individual gain (volume 

settings) to each to mimic positioning the sounds to the left or the right of the listener.  

On face value this would not seem beneficial to using 3D sounds, which permit full 

spatialization around the listener.  However, most sound cards contain separate hardware 

resources and buffers for processing 2D sounds, which are distinct and separate from 

those resources for processing 3D sounds.  For sounds associated with the listener that 

will always be positioning relative to the listener, such as footsteps, utilizing a 2D 

gfSoundObject will free 3D hardware resources for utilization by other sounds.  In this 

manner, applications may increase the number of simultaneously playing sounds by 

utilizing a mixture of 2D and 3D sounds, optimizing the hardware resources on the sound 

card. 

Other methods in the gfSoundObject class do the following: 

• Set pitch of the sound.  Three methods permit manual frequency changes 
for the sound: increase pitch, decrease pitch, and set pitch.  Changing the 
pitch changes the sampling frequency of the stored wav file during 
playback.  This is very useful in simulating sounds such as engine noise 
that changes with an RPM change. 

• Setting volume.  Three methods permit volume manipulation of the sound.  
All volume changes are applied to the original gain (volume) of the sound.  
The volume cannot be increased over the original recorded volume, but 
can decrease the volume of the sound.  If the volume is decreased, it can 
be increased, but only to a maximum of its original recorded level. 

• EAX effects.  The three source-specific EAX effects (obstruction, 
occlusion and exclusion) can be set for each individual sound.  The 
gfSoundObject class only permits manual setting of these effects; for 
automatic updating of effects as the listener moves through a virtual 
environment, see the documentation regarding gfAudioEnvironment, 
gfAudioEnvironmentManager, and gfAudioEnvironmentTransition. 

• Tethering a sound to an object.  The gfSoundObject class permits a sound 
to be tethered to any object in the environment.  Most sounds in a virtual 
environment will emanate from a physical source, graphically rendered to 
the observer in the environment.  A gfSoundObject can be tethered to an 
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object and as the object is moved or updated in the environment, the sound 
will dynamically move with it. 

Another significant option for gfSoundObjects is the ability to network sounds.  

For example, if two participants share a networked virtual world, and the first user 

initiates an action that produces a sound, the second user should hear the sound in the 

exact location where the first user created it.  The gfSoundObject contains a state variable 

for use by the developer to automatically inform all remote users in a shared virtual world 

of a sound, as show in Figure 18. 

 
void gfSoundObject::Send(gfSoundActionEnum action) 
{ 
 gfSoundActionPacket *soundAction = new gfSoundActionPacket(); 
 strcpy(soundAction->mFileName, GetFileName()); 
 soundAction->action = action; 
 sgVec3 pos; 
 this->GetPosition(pos); 
 sgSetVec3(soundAction->mPos, pos[0], pos[1], pos[2]); 
 soundAction->mType = GFPACKET_TYPE_SOUND_ACTION; 
 soundAction->mPacketSize = sizeof(gfSoundActionPacket); 
 if(mTether) soundAction->mTethered = true; 
 if(g_gfNetwork) g_gfNetwork->Send(soundAction);  
} 

 
Figure 18.   gfSoundObject Send Method. 

 

When the application developer desires to expose a sound to the network, the 

instantiation of the gfSoundObject constructor sets a variable that flags this sound as one 

that will transmit state information to the network whenever a state change is made.  

Figure 16 depicts the creation of a network data packet for the sound in question. 

 
4. gfAudioEnvironment 

The gfAudioEnvironment class represents an audio environment or room within 

the virtual world.  A gfAudioEnvironment is instantiated for each separate room in the 

virtual environment, and individual acoustic characteristics can be set to represent the 

natural acoustics of that type of room or space.  The gfAudioEnvironment.h and 

gfAudioEnvironment.cpp files contain two utility shape classes, gfCube (representing a 

three-dimensional cubic volume) and gfSphere (representing a three-Dimensional sphere) 

for determining the size and location of the audio environment. 
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The gfAudioEnvironment class is used strictly to determine whether a position in 

the virtual environment is contained within the associated shape of that environment and 

to store characteristics of that audio environment, such as size, shape, EAX acoustic 

properties and material conditions.  The EAX acoustic properties are associated with 

the type of reverberation that will be applied in that audio environment.  The material 

properties are settings that will affect the transitivity of the sound through barriers of the 

environment.  For example, the material properties of an environment might be set to 

stone, indicating that the audio environment is mimicking a room with stonewalls, 

ceilings and floors.  A different audio environment might be set to wood.  A stone room 

will almost completely block all sounds generated inside the room from transmitting 

through the barriers walls.  A wool room will permit a portion of the sound energy to 

transmit through the walls.  Any position can be checked as to whether it resides inside 

the environment or outside the environment.  For example, every time step the listener’s 

position is compared to a global list of audio environments to determine which 

environment the listener is in.  When a match is found, any characteristics of that 

environment can be set for the listener.  The gfAudioEnvironment class, by itself, does 

not set the characteristics for any other class; it is used by the 

gfAudioEnvironmentManager to maintain the state of the listener as it moves through the 

virtual world. 

 

5. gfAudioEnvironmentTransition 

The gfAudioEnvironmentTransition class is used to model the acoustic effects of 

sounds as they transmit through portals, such as doorways and windows.  It sets an area 

or location in the virtual environment where acoustic effects can be blended between 

audio environments with different characteristics. 

Initially, a gfAudioEnvironmentTransition is constructed with references to two 

gfAudioEnvironments.  The two environments are independently created to represent the 

separate audio environments separated by the portal.  Additionally, like in 

gfAudioEnvironment, a shape is given to the transition zone overlapping the two 

environments, as in Figure 18.  The same shape classes are used as in 
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gfAudioEnvironment.  If the listener is located within a gfAudioEnvironmentTransition 

shape, the acoustic environment settings from each of the gfAudioEnvironments are 

blended together according to the relative positioning of the listener within the transition 

zone and the individual settings of the environments. 

 
Figure 19.   Audio Transition Zone. 

 

Once it is determined that the listener is in a transition zone, the transitional effect 

must be created.  Since EAX effects are generated through numeric inputs to EAX 

methods, performing a relative distance calculation on the numeric inputs for each of the 

two individual gfAudioEnvironments creates the blended effect.  For example, if the 

listener is moving from one gfAudioEnvironment to another through a transition zone, 

and has moved through 25% of the transition zone then the resulting numeric inputs to 

EAX are calculated by simple mathematical averaging of 25% of the first 

gfAudioEnvironment’s inputs with 75% of the second gfAudioEnvironment’s inputs. 

The calculations for the blended acoustic effect utilize the 

EAXListenerInterpolate function provided in EAX 3.0.  Figure 19 shows the 

gfAudioEnvironmentTransition method for setting the interpolated effect.  Both 

environments must be valid gfAudioEnvironments for transition effects to be applied.  

This precludes setting an effect when a transition zone is created without two 

corresponding gfAudioEnvironments. 

 
void gfAudioEnvironmentTransition::SetTransitionEffect() 
{ 
 if(!mEnv1 || !mEnv2) return;  //ensure both environments valid 
  
 EAXLISTENERPROPERTIES transProps;  // for resulting properties 
 EAXLISTENERPROPERTIES StartEAX3LP = GetEAXListenerProp( 
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 EAXLISTENERPROPERTIES FinishEAX3LP = GetEAXListenerProp( 
  mEnv2->GetEnvironmentType()); 
 EAX3ListenerInterpolate(&StartEAX3LP, &FinishEAX3LP,     
  GetTransitionRatio(), &transProps, true);  
 g_gfListener->SetEnviron(transProps);  
} 

 
Figure 20.   SetTransitionEffect Method. 

 

First, the numeric parameters of each environment are extracted and provided to 

the EAXListenerInterpolate method with a ratio of relative distance moved 

through the zone.  The amount of distance moved through the zone is obtained through 

the GetTransitionRatio() method, which uses gfAudioEnvironment environment 

shape center positions, gfAudioEnvironmentTransition shape center positions, and 

distances from the listener position to each of these points in determining what ratio of 

transition zone has been crossed and in which direction.  Finally, the newly calculated 

numeric inputs are provided to the gfListener class to set a blended acoustic effect for the 

portal environment. 

 

6. gfAudioEnvironmentManager 

The gfAudioEnvironmentManager class is responsible for maintaining an 

accurate spatial relationship between the listener and all of the sounds in the environment.  

This class if instantiated constantly monitors the listener positions and compares it to the 

location of all sounds, whether statically positioned or dynamically updated.  At a user 

prescribed rate, calculations of relative positions result in the setting of occlusion, 

obstruction, or exclusion effects for each individual sound.  Additionally, the 

environment setting for the listener is automatically updated as the location of the listener 

moves through gfAudioEnvironments.  The gfAudioEnvironmentManager class requires 

the presence of at least one gfAudioEnvironment for automatic processing of 

environmental effects, including audio environments and transition zones. 

The primary effect of the gfAudioEnvironmentManager class resides in the 

Update() method, periodically calculates the actual positioning of the listener and sounds 

in the environment.  Figure 20 depicts a small portion of the Update() method with 

pseudo-code in appropriate places.  Occlusion, obstruction and exclusion are effects 
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applied to each sound depending on whether the position of those sounds is within 

eyesight of the listener and on whether the listener and the sound reside in the same or 

different gfAudioEnvironments.  If the listener and the sound exist in the same audio 

environment, they can be considered to be in the same room.  If they reside in different 

audio environments, they are considered to be in different rooms.  The position 

associated with a sound does not require the presence of a visible object.  First, the 

SetListenerEnvironment() method determines what reverberation setting must 

be applied to the listener’s global environment.  Then, each sound in the environment is 

screened against the following criteria: 

• The sound is playing 

• The sound is looping 

• The sound is not positioned relative to the listener 

 
SetListenerAudioEnvironment(); 
CheckSounds(); 
if(SoundObjectList->GetNum() > 0) 
{     
 for(int i = 0; i < SoundObjectList->GetNum(); i++) 
 { 
  mTempSound  = (gfSoundObject*)SoundObjectList->Get(i); 
  if(!mTempSound->IsRelative() && (mTempSound->IsPlaying() ||  
   mTempSound->IsLooping()) ) 
  { 
   mTempSound->GetPosition(soundPos); 
   mTempAudEnv = GetSoundObjectAudioEnvironment();  
   bool hit = gfGetLOS(listenerPos, soundPos); 
     
 // in same audio environment and not obstructed - no effects 
   if( hit && (mListenerEnv == mTempAudEnv)) 
   {       
    Remove effects 
   } 
     
 // excluded - hit but not in same environment 
   else if( hit && (mListenerEnv != mTempAudEnv)) 
   { 
    Remove obstruction and occlusion 
    Set exclusion effect 
   } 
 // obstructed - not hit but in same environment 
   else if( !hit && (mListenerEnv == mTempAudEnv)) 
   { 
    Remove exclusion and occlusion 
    Set obstruction effect  
   } 
     
 // occluded - not hit and not in same environment 
   else if( !hit && (mListenerEnv != mTempAudEnv)) 
   { 
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    Remove exclusion and obstruction effect 



    Set occlusion effect 
   } 
  } 
 } 

 
Figure 21.   Portion of gfAudioEnvironmentManager Update() Method. 

 

The purpose for screening out sounds that are set as relative to the listener is that 

these sounds are generally placed in close proximity to the listener to simulate such 

sounds as footsteps or the sound of a weapon fired by the listener.  Since these sounds are 

generally positioned closely to the listener, effects such as obstruction and occlusion do 

not apply - there are extremely few cases where the sound of the listener’s footsteps will 

be in a different audio environment than the listener’s ears.  To reduce processing and 

CPU overhead, these sounds are eliminated from obstruction, occlusion and exclusion  

 
Sound within eyesight 
of listener 

Sound and listener in 
same audio environment 

No effect   

Sound within eyesight 
of listener 

Sound and listener in 
different audio 
environments 

Exclusion Although within eyesight, the sound 
is outside the listener’s audio 
environment.  
 Example: listener in a room and the 
sound is in the hallway outside the 
room, but the position of the sound 
is visible to the listener 
Result: Listener receives direct path 
sound energy but no reverberated or 
reflected sound energy 

Sound not within 
eyesight of listener 

Sound and listener in 
same audio environment 

Obstruction Although the sound and listener are 
in the same environment, the sound 
position can not be seen by the 
listener 
Example:  Both listener and sound 
in a room, but an object is between 
them precluding the listener from 
seeing the sound’s position 
Result: Listener does not receive 
any direct path sound energy, only 
reverberated or reflected sound 
waves 

Sound not within 
eyesight of listener 

Sound and listener in 
different audio 
environments 

Occlusion The listener cannot see the sound’s 
position and they are in different 
audio environments. 
Example: Listener in one room and 
sound in another, without a portal in 
direct LOS between listener and 
sound positions 
Result:  Listener receives neither 
direct path reflected sound energy; 
only muffled sound energy 
transmitted through separating 
medium is heard 

 
Table 2.   Criteria for Determining EAX Effect. 
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effects processing.  Once the list of sounds is screened, each sound’s position is used to 

determine: 

• Whether the sound’s position is within eyesight of the listener, and 

• Whether the sound and listener are in the same or different audio 
environments. 

Table 2 shows the criteria for which type of effect (obstruction, occlusion or 

exclusion) to set for each remaining sound. 

 

7. gfNetVoice 
The gfNetVoice class is responsible for adding live voice to a virtual environment 

in the case where multiple players in the shared virtual world are distributed, precluding 

the use of the Ausim3D GoldServe for live voice streaming.  gfNetVoice depends on the 

presence of a DirectPlay network instance for its data transportation between peers.  

The DirectPlay network connection is created in a gfNetwork class, which is part of the 

core gfLib development package.  Establishment of the DirectPlay network, in the 

gfNetwork class, was placed in the core library for two reasons: 

• A network for data communications may be required in certain gfLib 
applications even without the need for voice communications.  If the 
gfNetwork class was part of the gfAudio library, application developers 
would be required to link yet another library in with their software when a 
major portion of the gfAudio library functionality was not required. 

• Developer-derived networking classes, which would add functionality to 
gfNetwork, would also require the presence of the gfAudio library when 
gfAudio functionality was not required 

Even though its networking “under-layer” is present in a different library, 

gfNetVoice accomplishes live streaming voice by creating a peer-to-peer voice session 

over the underlying network connection.  The underlying network connection may also 

be used for data and state information passing between participants.  This model, 

separating the network connection from the voice connection, is also the standard model 

used in VoIP applications.  For example, JVOIP, a spatialized VoIP framework library 

used to add live voice to virtual environments, uses an Real-Time Transport Protocol 

(RTP) network connection as the data transport layer below the VoIP connection used for 

the streaming voice. 
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The gfNetVoice voice session is created as a peer-to-peer voice session.  Each 

session has a host, which can be a different node in the network than the gfNetwork host.  

Both DirectPlay networks and DirectVoice voice sessions can be configured in two 

ways, either peer-to-peer or client-server.  In client server configurations, all data and 

voice transmissions pass through a central server application and host machine.  For live 

voice, this adds a considerable amount of latency in the voice signal, and precludes 

utilization.  Because the natural selection for the voice session is peer-to-peer, an 

equivalent mode was selected for the DirectPlay network.   

The host in the voice session is responsible for creating an 

IDirectVoicePlayServer object and a session description, DVSESSIONDESC.  The 

session description is used to set parameters of the voice session; the most important 

parameter is the compression type used for converting the voice signal into binary data 

fro transmission over the DirectPlay network.  Figure 21 depicts the session host setup. 
if( FAILED( hr = CoCreateInstance(CLSID_DirectPlayVoiceServer, NULL,  
 CLSCTX_INPROC_SERVER, IID_IDirectPlayVoiceServer,  
 (LPVOID*) &voiceServer ) ) ) 
. . . 
if( FAILED( hr = voiceServer->Initialize(g_Peer, ServerMessageHandler, 
(void*)this, 0, 0 ) ) ) 
 
ZeroMemory(&SessionDesc, sizeof(DVSESSIONDESC));            
SessionDesc.dwSize = sizeof(DVSESSIONDESC); 
SessionDesc.dwFlags = DVSESSION_NOHOSTMIGRATION; 
SessionDesc.dwSessionType = DVSESSIONTYPE_PEER; 
SessionDesc.dwBufferQuality = DVBUFFERQUALITY_DEFAULT;                
SessionDesc.guidCT = DPVCTGUID_ADPCM;                               
SessionDesc.dwBufferAggressiveness = DVBUFFERAGGRESSIVENESS_DEFAULT;   
 
if( FAILED( hr = voiceServer->StartSession(&SessionDesc, 0 ) ) ) 
. . . 

 
Figure 22.   gfNetVoice Host Setup. 

 

Both the host and the clients must connect to the voice session.  While Figure 21 

depicts source code found only in the host, Figure 22 shows both host and client 

construction of an IDirectPlayVoiceClient object.  Additionally, two DirectVoice 

structs, DVSOUNDDEVICECONFIG and DVCLIENTCONFIG, set parameters for the host 

or client machine’s sound card for recording, playback, window focus, and threshold 

volume.  Threshold volume is used to start a recording on either the host or client.  To 

preclude flooding the network with voice packets when no voice is present but 
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background sounds are heard, the threshold level can be modified to require a certain 

volume at the microphone before recording, compression and transmission commences. 

 
if( FAILED( hr = CoCreateInstance(CLSID_DirectPlayVoiceClient, NULL,  
  CLSCTX_INPROC_SERVER, 
  IID_IDirectPlayVoiceClient,  
  (LPVOID*) &voiceClient ) ) ) 
. . .  
 
if( FAILED( hr = voiceClient->Initialize(g_Peer, ClientMessageHandler, 
(void*)this, 0, 0 ) ) ) 
 
. . . 
 
gfWindow *win = (gfWindow*)WinList->Get(0); 
ZeroMemory(&SoundDeviceConfig, sizeof(DVSOUNDDEVICECONFIG)); 
SoundDeviceConfig.dwSize = sizeof(DVSOUNDDEVICECONFIG); 
SoundDeviceConfig.dwFlags = DVSOUNDCONFIG_AUTOSELECT; 
SoundDeviceConfig.guidPlaybackDevice = DSDEVID_DefaultPlayback; 
SoundDeviceConfig.lpdsPlaybackDevice = pDS; 
SoundDeviceConfig.guidCaptureDevice = DSDEVID_DefaultCapture; 
SoundDeviceConfig.lpdsCaptureDevice = NULL; 
SoundDeviceConfig.hwndAppWindow = (HWND)win->GetGZWindow()->getHandle  
SoundDeviceConfig.lpdsMainBuffer = NULL; 
SoundDeviceConfig.dwMainBufferFlags = 0; 
SoundDeviceConfig.dwMainBufferPriority = 0; 
  
 
ZeroMemory(&ClientConfig, sizeof(DVCLIENTCONFIG)); 
ClientConfig.dwSize = sizeof(DVCLIENTCONFIG); 
ClientConfig.dwFlags = DVCLIENTCONFIG_AUTOVOICEACTIVATED | 
 DVCLIENTCONFIG_AUTORECORDVOLUME | DVCLIENTCONFIG_MUTEGLOBAL | 
 DVCLIENTCONFIG_ECHOSUPPRESSION  ; 
ClientConfig.lRecordVolume = DVRECORDVOLUME_LAST;                       
ClientConfig.lPlaybackVolume = DVPLAYBACKVOLUME_DEFAULT;                
ClientConfig.dwThreshold = DVTHRESHOLD_UNUSED;                          
ClientConfig.dwBufferQuality = DVBUFFERQUALITY_DEFAULT;                  
ClientConfig.dwBufferAggressiveness = DVBUFFERAGGRESSIVENESS_DEFAULT;   
ClientConfig.dwNotifyPeriod = 0; 
  
if( FAILED( hr = voiceClient->Connect(&SoundDeviceConfig, &ClientConfig, 
DVFLAGS_SYNC ) ) ) 
. . . 

 
Figure 23.   gfNetVoice Client Connection Source Code. 

 

After all parameters are set, the client connects to the voice server and the voice 

session is commenced.  DirectVoice supports a voice session with up to sixty-four 

participants.  However, it would be near impossible to discern sixty-four voices 

simultaneously speaking in an environment.  Additionally, sixty-four clients would 

generate such a significant amount of voice data packets that the network would be 

saturated to the point of being unusable.  However, in many scenarios involving military 
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virtual environment training systems, where two to ten participants train together, 

gfNetVoice is fully capable of providing live voice to all virtual environment users. 

The gfNetVoice class also contains functionality to provide for the following: 

• Spatialized voice - gfNetVoice can spatialize each individual voice in 
three dimensions.  Spatialization is accomplished in much the same way as 
in gfSoundObject, through creation of IDirectSound3Dbuffers for each 
voice client and positioning those buffers as desired. 

• Occlusion, obstruction and exclusion - gfNetVoice permits setting of 
EAX effects for individual voices in the virtual environment 

• Minimum and maximum voice distance - gfNetVoice allows for setting of 
minimum and maximum voice distances, which can be used to alter the 
distance a voice is heard in the virtual environment 

The gfNetVoice class is indirectly tied to the gfListener class.  The gfListener is 

responsible for sending voice position information over the network for its respective 

user in the virtual environment.  Every time the gfListener position is updated, a new 

voice position packet is generated and transmitted to all users in the shared virtual world.  

In this manner, voices are automatically tethered to listeners (mouths tethered to ears).   

 
C. AUSERVERLIB 

1. auSystem 

The auSystem class is designed as an overall timer and administrator between all 

other classes, responsible for sending internal messages between classes, internal timing 

for managing updates to the GoldServe, and permitting developers to adjust timing as to 

not overload the GoldServe with updates faster than the GoldServe system will allow 

before latency in positioning occurs. 

2. auBase 
The auBase class is used as a base class for all derived au classes.  It is derived 

from Gizmo3D classes, which permits instantiations of auBase-derived classes to be 

considered as message senders or receivers for internal message passing.  Several 

methods are included to permit developers to determine actual class type when auBase-

derived classes are used as objects in internal messages. 
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3. auSource 

The auSource class represents an Ausdim3D GoldServe source.  Two classes are 

derived from auSource that are used by developers - auSound and auChannel - which 

correspond to the two types of sources that the GoldServe operates with:  sources created 

from pre-recorded wav files (auSound) and sources relating to live input channels 

(auChannel).  Any source can be positioned in three dimensions, and can have source-

specific rolloff attenuation settings.  Volume or gain can be adjusted for any source.  

Unlike DirectSound3D, where volume can only be reduced from the original recording 

level, auSources permit volume amplification beyond the original recorded level.  Rolloff 

is a source-specific parameter for auSources, and can be adjusted for each source 

independently.  Position, volume and rolloff for auChannels and auSounds are set 

through methods in the auSource class. 

Like in DirectSound3D, sources can either be spatialized or non-spatialized.  

Non-spatialized sources for the GoldServe can be thought of as 2D sounds in 

DirectSound3D.  For non-spatialized sources, programmers have the ability to stereo 

pan the source to the left or the right of the listener.  However, no spatialization 

processing is conducted and the source will appear to move automatically with the 

listener.  An example of this is the footsteps, discussed as an example of 2D sounds in 

DirectSound3D.  Additionally, when a sound is not spatialized, no externalization will 

be possible.  Externalization is the perception to the user that the sound source originates 

from a position external to the listener.  When a sound is panned, although it can appear 

to emanate to the left or the right of the listener, it will not appear to emanate from a left 

or right position displaced form the user. 

The auSource class handles source directivity for auChannels and auSounds.  

Directivity of a sound is achieved by attenuating the radiation of a source at various 

angular measurements around the source (see Figure 23.) 
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Figure 24.   auSource Radiation Pattern Examples (www.ausim3d.com). 

 

All other functionality of auChannels and auSounds is found in the respective 

individual classes. 

 

4. auListener 
The auListener class, like the gfListener, represents the ears of the observer in a 

virtual environment.  Like in DirectSound3D, the listener’s position and orientation can 

be constantly updated in the virtual environment, providing an auditory experience of 

moving through the virtual world.  The GoldServe Audio Localizing Server system used 

to develop the auServerLib software is capable of serving up to four concurrent listeners 

within an application, or single listeners supporting up to four simultaneously running 

separate applications.  AuListeners are identified by name or by identification number.  

Listener identification numbers are created sequentially (starting with zero) as listeners 

are instantiated within an application. 

The auListener class, unlike DirectSound3D and DirectVoice, integrates live 

voice with the listener.  A portion of the auListener Config() method is shown in 

Figure 24. 
 
 int mode = Atrn_METER | _VERBOSE_;  
 if(cre_init(Atrn_BMP1, mID|_ORATOR_ , 32,  mode) < Ok) 

 
Figure 25.   auListener Config() Method. 
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The mode variable sets the standard distance for rolloff calculations through the 

setting of the Atrn_METER flag.  The cre_init method creates the listener (the 

Atrn_BMP1 flag is used to identify the type of operating software on the GoldServe; the 

GoldServe software is developed to operate on several different Ausim3D and legacy 

systems.)  The mID variable represents the listener identification number.  The 

_ORATOR_ flag creates a live input source for the listener’s voice that is continually re-

positioned as the listener position is updated.  Additionally, the listener is blocked from 

hearing input from the source identified as his or her own voice.  All other listeners in the 

virtual environment will hear the voice signal.  Additional functionality regarding the live 

input for the listener’s voice includes: 

• Voice volume.  The global volume of any listener’s voice input can be 
modified.  If modified, the volume change will affect all other listener’s 
perceptions of the volume. 

• Voice radiation pattern.  As with auSources, the radiation pattern of the 
live voice input can be modified for directivity (see Figure 23).  This is 
useful in modeling the effect of a voice when the listener changes 
orientation.  A live voice (tethered to a visual object, such as an avatar in 
the virtual environment) would sound different (generally louder) when 
the avatar is facing the listener than when the avatar is facing away from 
the listener (attenuated).   

• Mouth offset.  Our mouths and our ears are displaced from each other.  If 
listeners were positioned in close proximity to one another, we would be 
able to discern the separation of the mouth (as a sound source) from our 
ears (as a reception source).  To model this separation, mouth offset is 
used to place the live input voice source at a specified distance and 
orientation from the reception (ears) location. 

• Voice input channel.  This is a utility method for prescribing which of the 
external live input connections will service the microphone for the voice 
input of the listener. 

In some circumstances, the volume of a listener’s voice may not be of the same 

intensity for all other listeners in the virtual environment.  For example, three users 

(listener A, listener B, listener C) navigate through a virtual environment, with two 

(listener A and listener B) being positioned inside the same room, and the third (listener 

C) positioned outside the room.  Between listener A and listener B, voice volumes should 

be unaffected.  However, the volume of the voice of listener A as heard by listener C 

should be attenuated (in addition to normal distance attenuation) due to occlusion, much 
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like in DirectSound3D.  Figure 25 displays a method in auListener that permits setting 

individual volumes for a listener’s voice to any other listener in the virtual environment, 

mimicking the occlusion and obstruction effects found in EAX.  The IdAndGain struct 

permits the paring of a single listener identification number with a volume level.  All 

other listeners in the virtual environment hear the voice volume as if it were unadjusted. 

Additionally, virtual environment conditions may require that any single voice be 

directed only to a single exclusive listener.  This can model radio communications where 

not all participants in a shared virtual environment hear the respective listener’s voice; 

only the specified listener receives the voice audio, spatialized or non-spatialized.  Figure 

26 shows the auListener SetExclusive method for obtaining this functionality.  Notice 

that setting a voice exclusive to a listener requires two operations; first, the voice volume 

is set to zero for all listeners in the virtual world (effectively muting the voice) and then 

the volume is adjusted to desired level for the specified listener. 
bool auListener::SetVolumeForListener(auListener* otherListener, float dB) 
{ 
 . . .  
 IdAndGain temp; 
 temp.id = otherListener->GetID(); 
 temp.dB = dB; 
  
 if(cre_define_source(mID, AtrnPATHgain, sizeof(IdAndGain), &temp) < 0) 
 { 
  . . . 
  return FAILURE; 
 } 
 . . . 
 return SUCCESS; 
} 

 
Figure 26.   auListener SetVolumeForListener Method. 

 
bool auListener::SetExclusive(auListener* listener) 
{ 
. . .  
 IdAndGain temp; 
 temp.id = ALL_HEADS; 
 temp.dB = PATH_GAIN_DISABLE_PATH; 
  
 if(cre_define_source(mID, AtrnPATHgain, sizeof(IdAndGain), &temp) < 0) 
 { 
  . . . 
  return FAILURE; 
 } 
  
 temp.id = listener->GetID(); 
 temp.dB = 0.0f; 
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 if(cre_define_source(mID, AtrnPATHgain, sizeof(IdAndGain), &temp) < 0) 



 { 
  . . . 
  return FAILURE; 
 } 
 return SUCCESS; 
} 

 
Figure 27.   auListener SetExclusive Method. 

 
5. auSound 
An auSound instance represents a sound in the virtual environment in the form of 

a pre-recorded wav file.  Sounds can be positioned in three dimensions, radiate in 

prescribed patterns, and attenuate with specific rolloff.  Since these capabilities exist for 

both auSounds and auChannels, the code and functionality exists in the auSource class, 

the parent of both auSound and auChannel. 

To hear a sound, it can either be played or looped.  Looping a sound refers to a 

continuous playing of the wav file from start to finish over and over until a termination 

signal is sent.  Figure 27 shows how to play or loop a sound.  The only difference 

required to distinguish whether a sound is played or looped is which flag to set when 

calling the cre_ctrl_wave method; WaveCTRL_STRT indicates the sound should be played 

one time from start to completion, and WaveCTRL_LOOP indicates the sound should be 

continuously looped until termination. 
 

bool auSound::Play() 
{ 
 . . .   
 if(cre_ctrl_wave(mSourceID, mWav, WaveCTRL_STRT, NULL) < 0) 
 { 
  . . . 
  return FAILURE; 
 } 
 cre_update_audio(); 
 return SUCCESS; 
} 
 
bool auSound::Loop() 
{ 
 . . .  
 if(cre_ctrl_wave(mSourceID, mWav, WaveCTRL_LOOP, NULL) < 0) 
 { 
  . . . 
  return FAILURE; 
 } 
 return SUCCESS; 
} 

 
Figure 28.   auSound Play( ) and Loop( ) Methods. 
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In certain situations, it may be desirable to link a sound to a listener in the virtual 

environment.  Since the listener represents the observer or participant in the environment, 

linking a sound to the listener essentially links a sound to the participant.  This is useful 

in the case of footsteps, mentioned previously as a sound that will continuously move 

through the virtual environment with the observer.  Figure 28 shows how to link a sound 

with a listener.  The name of the listener is stored for later retrieval if necessary. 

Like voices, sound volume can also be set individually for individual listeners, or 

can be set exclusive to a single listener in the virtual environment.  To see an explanation 

of either function, see the auListener section or Appendix B. 

 
bool auSound::LinkToListener(auListener* listener) 
{ 
 mLinkListener = listener; 
 isLinked = true; 
 if(!isConfigured) return FAILURE; 
  
 if(cre_define_source(mSourceID, AtrnHEADlink, listener->GetID(),  
  NULL) < 0) 
 { 
  . . . 
  isLinked = false; 
  return FAILURE; 
 } 
 strcpy(mLinkName, listener->GetName()); 
 return SUCCESS; 
} 

 
Figure 29.   auSound LinkToListener Method. 

 

6. auChannel 
The auChannel class represents a live input to the Ausim3D GoldServe.  In this 

architecture, the live inputs represent the live voices of the participants in the shared 

virtual world.  However, auChannels could be instantiated to add live audio inputs to a 

virtual environment such as radio transmissions, external streaming sounds, or any 

continuous audio signal.  

Since much of the source code is very similar to that found in auListener or 

auSound, no source code is listed here.  The auChannel class contains the necessary 

methods to permit: 
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• Linking live input channels with a listener.  As with auSound, when an 
auChannel is linked to a specific auListener, the channel is automatically 
positioned with the auListener and updated accordingly. 

• Setting the channel volume for specified listeners.  Like the auListener 
SetVolumeForListener() method, individual volume settings may be made 
for each listener in the virtual environment. 

• Setting the channel exclusive to a listener.  A live input channel may be 
“routed” to only a single listener in the virtual environment. 

The third capability mentioned, the ability to set a channel exclusive to a listener, 

is critical to the audio architecture prescribed in this thesis.  In the scenario where 

multiple users connect to a networked, shared virtual environment and the participants 

are physically co-located, the architecture implements the Ausim3D GoldServe for live 

voice and uses the individual client PCs to generate the environment audio.  To combine 

the individual audio from each user’s machine with the live 3D voice supplied by the 

GoldServe, the individual user’s audio, generated by the client PC’s sound card using 

DirectSound3D and EAX, is routed to the GoldServe as two live input channels, one 

for each stereo channel.  Using the ability to set any channel exclusive to a listener, these 

live inputs are routed only to the respective listener in the virtual environment.  Voice 

audio is layered over the live input, thereby providing a live voice capability to an audio 

environment.  Since the Audim3D GoldServe is not currently capable of providing for 

environmental effects such as reverberation, occlusion and obstruction, using 

DirectSound3D and EAX on each client machine creates those necessary effects 

while the exceptionally low-latency live input capability of the GoldServe processes live 

voice.  The architecture blends the most beneficial aspects of DirectSound3D, EAX 

and hardware capability to provide the most immersive, interactive audio environment 

available. 

 

7. auNotify 

The auNotify class is a utility class used to print text and data, generally to a 

console window as part of an application.  Developers can use one of five notification 

levels to determine the level of text output. 
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8. auTools 

The auTools class contains methods to set global variables in the GoldServe audio 

environment, such as global rolloff factors and global atmospheric absorption rates 

affecting all sounds and live input channels.  Additionally, the auTools class contains 

utility methods used by the auListener, auSound and auChannel classes to provide 

sequential source numbers used by the GoldServe for source and system management.  

 

9. Summary 
The auServerLib implementation’s primary purpose is to permit the inclusion of 

live, low-latency, spatialized voice in a networked virtual environment.  However, the 

software library’s secondary purpose was to encapsulate the GoldServe’s native 

programming API (CRE_TRON) into a useful programming suite of tools for use in 

other applications as well.  The auServerLib can be used to create a complete, stand-alone 

auditory environment or can be used exclusively as the audio suite for a virtual 

environment.  The main reason for not choosing the Ausim3D GoldServe for all audio in 

a virtual environment is its inability to provide effects, such as occlusion, obstruction, 

exclusion and reverberation, currently incorporated by EAX.  Ausim3D is currently 

developing a programming API that will incorporate all aspects of environmental 

acoustics.   
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 
This thesis has provided guidance and an example of an audio architecture 

capable of serving various configurations of virtual environment training systems.  From 

single, independent users to networked, multi-user shared virtual environments with live 

streaming voice, this architecture is capable of delivering a fully immersive, interactive, 

and high quality audio capability for inclusion in virtual environment training systems 

and simulators.  The software component of this architecture is capable of operating on 

any standard PC and is developed from free or public-domain source code.  The hardware 

component, the Ausim3D GoldServe, is COTS technology immediately available for 

utilization. 

 

B. RECOMMENDATIONS 
The architecture recommended by this thesis for use in virtual environment 

training systems is meant to support three virtual environment configurations: 

• Single, independent user 

• Multiple users, live voice not required 

• Multiple users, physically co-located, live voice required 

• Multiple users, physically distributed, live voice required 
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For single, independent users, a combination of DirectSound3D and EAX 

software operating on a single PC can provide the types of sounds and sound effects 

necessary to accurately simulate most acoustic environments found in military training 

scenarios.  DirectSound3D encompasses the functionality to fully spatialize all sounds, 

providing dynamic distance attenuation, rolloff, volume and frequency manipulation, and 

source directivity.  Since sound is interactive with the environment in which it is played, 

EAX provides the ability to model sound interaction with the physically modeled 

graphical environment to create effects such as reverberation, occlusion, obstruction, and 

exclusion.  Without these effects, sounds in an environment will not appear to be realistic 

nor will they sound as they do in the real world.  As seen in the two task analyses of 

military training evolutions, acoustic cues may be critical elements of a task.  If a virtual 



environment is to create a synthetic simulation of a training environment, the production 

of realistic audio cues, through the integration of DirectSound3D and EAX, is a 

necessary element and component of the virtual environment training system.  

When multiple users share a virtual environment where no live voice is required, 

the above configuration is still applicable.  Because DirectSound3D is tightly 

integrated with DirectPlay within the DirectX development kit, multiple-user acoustic 

environments can be developed for up to sixty-four users. 

For the two configurations mentioned thus far, where virtual environment audio is 

generated local to the respective user’s machine and sound card, the quality and 

capability of the sound card is paramount.  During development and testing of the 

implementation described in this thesis, Creative Technologies Audigy sound cards 

where utilized on all systems.  The Audigy is the latest generation sound card released 

by Creative, and is widely considered as one of the best PC sound cards available today.  

Although DirectSound3D will work on just about every PC sound card commercially 

available, EAX requires a sound card supporting hardware acceleration through 

onboard hardware buffering.  Additionally, since both EAX and the Audigy sound 

card are both produced by Creative, the Audigy is specially designed to support all 

EAX capabilities and provides the maximum number of hardware-accelerated buffers 

of most commercially available sound cards. 

For multiple-user, networked virtual environments requiring live voice, there are 

two implementations of live voice that can be used.  For shared virtual environment 

configurations where multiple users operate on individual machines but those machines 

are physically co-located, the Ausim3D GoldServe is by far the superior choice for live 

voice implementation.  With considerably lower latency in voice processing than VoIP, 

the GoldServe offers the best solution for adding live voice to any multiple user virtual 

environments.  Most deployed multiple user training systems will be confined to a small 

space or area for utilization, and the GoldServe equipment’s size and footprint are 

extremely small.  Integrating the superior sound and sound effects capabilities of 

DirectSound3D and EAX found in the single-user configuration with the low-latency 
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voice quality of the GoldServe offers the best audio configuration when users are 

physically co-located. 

In those cases where multiple users must be widely distributed, VoIP provides the 

live voice component.  Although VoIP faces critical voice latency issues, when users are 

distributed over a wide area, there are no other effective live voice implementations 

available.  For deployed training systems, where even simple telephone implementations 

of live voice are architecturally impossible, VoIP is the only solution.  DirectVoice is 

the only known VoIP application that fully supports spatialized live voice, and is the 

implementation recommended by this thesis.   

 

C. FUTURE WORK 

Although this study produced an audio architecture and implementation capable 

of providing a high quality auditory environment for virtual training systems, there are 

two areas of further research that will vastly improve the architecture’s capability to 

provide an even better acoustic environment and live voice capability for distributed 

virtual environments. 

First, while EAX is an extremely capable API for creating sound effects such as 

reverberation, occlusion, and obstruction, it is still somewhat limited in that it does not do 

actual acoustic modeling of the environment.  As a parameter-based sound effects API, 

developers are required to manipulate variables to achieve desired sound effects, many 

times through trial and error, a pain-staking and time-consuming process.  With five 

high-level parameters and over 15 low-level parameters, the number of permutations of 

variable changes and modifications in EAX possible to achieve a specific effect can be 

overwhelming.  Considering that these calculations and manipulations must occur not just 

once for a virtual environment, but for every position a user could find himself or herself 

in the virtual environment, a realistic auditory environment in a complex virtual world 

may take months to program and develop.  For true acoustic modeling, a geometry-based 

approach is necessary.  Geometry-based acoustic modeling refers to modeling the 

acoustics and audio characteristics of an environment based on the actual virtual 

geometry of that environment, much akin to graphical ray tracing in the visual sense.  
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Sounds played in the environment will interact with the visual geometry to naturally, and 

automatically, produce reverberation, occlusion and obstruction effects.  Scenario 

developers for virtual environment training systems will avoid the time-consuming 

process of manipulating numerous variables to achieve realistic sound effects.  Instead, 

an algorithm would produce the effects based on information provided by the developer 

as to the characteristics of the environment.  This information would only have to be 

provided once, as compared to the multiple iterations of calculations required in 

parameter-based sound effects.  Research into developing a geometry-based acoustic 

modeling capability will not only vastly improve the quality of the effects, but also 

significantly reduce the production time for high quality auditory environments for 

virtual training systems. 

Second, alternatives for live, low latency streaming voice must be developed.  

While the Ausim3D GoldServe provides an exceptionally low latency streaming voice 

capability, the requirement to be physically co-located with the hardware and the other 

participants in the virtual environment preclude its universal implementation.  While 

many training systems, and most of the deployed systems, will in fact not suffer due to 

this limitation, there are many other virtual training systems under development designed 

to provide multiple-user or team training when participants or team members are 

distributed over large areas.  One of the great benefits of virtual environments is their 

ability to place multiple individuals in a shared world even if they are not in a shared 

location to conduct simulations or training.  Until a low latency solution for live voice is 

discovered, these distributed virtual environments will either be faced with suffering from 

a high latency live voice system or nor live voice at all.  Neither are optimum, and further 

research and development into an IP-based, low latency live voice capability is necessary. 
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APPENDIX A. GFAUDIO DOCUMENTATION 

A. GFAUDIOENVIRONMENT CLASS REFERENCE 

1. Public Types 
• enum gfEnvironEnum { GF_GENERIC =  0, GF_PADDEDCELL, GF_ROOM, 

GF_BATHROOM, GF_LIVINGROOM, GF_STONEROOM, GF_AUDITORIUM, 
GF_CONCERTHALL, GF_CAVE, GF_ARENA, GF_HANGAR, 
GF_CARPETEDHALLWAY, GF_HALLWAY, GF_STONECORRIDOR, GF_ALLEY, 
GF_FOREST, GF_CITY, GF_MOUNTAINS, GF_QUARRY, GF_PLAIN, 
GF_PARKINGLOT, GF_SEWERPIPE, GF_UNDERWATER, GF_DRUGGED, 
GF_DIZZY, GF_PSYCHOTIC } 

  gfEnvironEnum - enum representing EAX effects. 
 

• enum gfMaterialEnum { GF_NONE =  0, GF_WINDOW, GF_DOOR, GF_WOOD, 
GF_BRICK, GF_STONE } 

 
2. Public Methods 
• gfAudioEnvironment (gfEnvironEnum environEnum=GF_GENERIC, gfShape 

*shape=NULL, const char *name=0) 
Constructor. 
 

• virtual ~gfAudioEnvironment () 
Destructor. 
 

• virtual void SetEnvironmentType (gfEnvironEnum environEnum) 
SetEnvironmentType - sets the environment type. 
 

• gfEnvironEnum GetEnvironmentType () 
GetEnvironmentType - gets the environment enum. 
 

• virtual void SetEnvironmentShape (gfShape *shape) 
SetEnvironmentShape - sets environment shape. 
 

• gfShape * GetEnvironmentShape () 
GetEnvironmentShape - returns pointer to area shape object. 
 

• bool InsideEnvironment (sgVec3 pos) 
InsideEnvironment - indicates whether position is inside environment or not. 
 

• void Location (sgVec3 pos) 
Location - moves the environment shape. 
 

• float * GetLocation () 
GetLocation - returns the center location of the shape. 
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• void SetEnvironmentMaterial (gfMaterialEnum material) 

SetEnvironmentMaterial - sets material settings for the environment. 
 

• gfMaterialEnum GetEnvironmentMaterial () 
GetEnvironmentMaterial. 

 
3. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
4. Detailed Description 

 
Class: gfAudioEnvironment  
Function: class to store coordinates, type, and size of one audio environment  
 

5. Member Enumeration Documentation 
• enum gfAudioEnvironment::gfEnvironEnum 

gfEnvironEnum - enum representing EAX effects. 
 
Enumeration values: 

GF_GENERIC   
GF_PADDEDCELL   
GF_ROOM   
GF_BATHROOM   
GF_LIVINGROOM   
GF_STONEROOM   
GF_AUDITORIUM   
GF_CONCERTHALL   
GF_CAVE   
GF_ARENA   
GF_HANGAR   
GF_CARPETEDHALLWAY   
GF_HALLWAY   
GF_STONECORRIDOR   
GF_ALLEY   
GF_FOREST   
GF_CITY   
GF_MOUNTAINS   
GF_QUARRY   
GF_PLAIN   
GF_PARKINGLOT   
GF_SEWERPIPE   
GF_UNDERWATER   
GF_DRUGGED   
GF_DIZZY   
GF_PSYCHOTIC   
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• enum gfAudioEnvironment::gfMaterialEnum 
 
Enumeration values: 

GF_NONE   
GF_WINDOW   
GF_DOOR   
GF_WOOD   
GF_BRICK   
GF_STONE   

 

6. Constructor and Destructor Documentation 
• gfAudioEnvironment::gfAudioEnvironment (gfEnvironEnum environEnum = 

GF_GENERIC, gfShape * shape = NULL, const char * name = 0) 
o Constructor. 
o Function: Constructor  
o Purpose: creates new gfAudioEnvironment and adds it to global list  
o Parameters:  

� name  - name for environment  
� environEnum  - gfAudioEnvironment enumeration for environment 

type  
 

• gfAudioEnvironment::~gfAudioEnvironment () [virtual] 
o Destructor. 
o Function: Destructor  
o Purpose: Destroys this gfAudioEnvironment  

 

7. Member Function Documentation 
• gfMaterialEnum gfAudioEnvironment::GetEnvironmentMaterial () [inline] 

o GetEnvironmentMaterial. 
 

• gfShape* gfAudioEnvironment::GetEnvironmentShape () [inline] 
o GetEnvironmentArea - returns box with area coordinates. 

 
• gfEnvironEnum gfAudioEnvironment::GetEnvironmentType () [inline] 

o GetEnvironmentType - gets the environment enum. 
 

• float* gfAudioEnvironment::GetLocation () [inline] 
o GetLocation - returns the center location of the shape. 

 
• bool gfAudioEnvironment::InsideEnvironment (sgVec3 pos) 

o InsideEnvironment. 
o Function: InsideEnvironment  
o Purpose: indicates whether gfPosition lies inside shape of environment or not  
o Parameters:  
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� pos  - the gfPosition to check inside/outside  
o Returns:  

� bool - TRUE = inside; FALSE = outside  
 

• void gfAudioEnvironment::Location (sgVec3 pos) 
o Locate - moves the environment shape. 
o Function: Locate  
o Purpose: locate an audio environment at a specified location  
o Parameters:  

� pos  - the sgVec3 for the center position  
 

• void gfAudioEnvironment::SetEnvironmentMaterial (gfMaterialEnum material) 
o SetEnvironmentMaterial. 
o Function: SetEnvironmentMaterial  
o Purpose: sets the environment material for occlusion  
o Parameters:  

� material  - the enumeration for the specified environment material 
settings  

 
• void gfAudioEnvironment::SetEnvironmentShape (gfShape * shape) [virtual] 

o SetEnvironmentArea - sets environment sphere. 
o Function: SetEnvironmentShape  
o Purpose: sets the environment shape  
o Parameters:  

� shape  - the shape object defining the shape of the environment  
 

• void gfAudioEnvironment::SetEnvironmentType (gfEnvironEnum environEnum) 
[virtual] 

o SetEnvironment - sets the environment type. 
o Function: SetEnvironmentType  
o Purpose: sets the environment type  
o Parameters:  

� environEnum  - the enumeration for the specified environment  
 

8. Member Data Documentation 
gfAudioEnvironment::GZ_DECLARE_TYPE_INTERFACE 

The documentation for this class was generated from the following files: 
gfaudioenvironment.h 
gfaudioenvironment.cpp 
 

B. GFAUDIOENVIRONMENTMANAGER CLASS REFERENCE 
#include <gfaudioenvironmentmanager.h> 
 

1. Public Methods 
• gfAudioEnvironmentManager () 
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Constructor. 
 

• ~gfAudioEnvironmentManager () 
Destructor. 
 

• const char * GetListenerEnv () 
GetListenerEnv - gets a handle to the current listener environment. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 

 
Class: gfAudioEnvironmentManager  
Function: Class to manage setting environmental effects for the listener depending on listener 
location within gfAudioEnvironments or gfAudioEnvironmentTransitions.  Manages automatic 
setting of obstruction, occlusion or exclusion settings for individual sounds and voices.  
 

4. Constructor and Destructor Documentation 
• gfAudioEnvironmentManager::gfAudioEnvironmentManager () 

o Constructor. 
o Function: Constructor  
o Purpose: creates new gfAudioEnvironment  

 
• gfAudioEnvironmentManager::~gfAudioEnvironmentManager () 

o Destructor. 
o Function: Destructor  
o Purpose: destroys gfAudioEnvironmentManager  

 

5. Member Function Documentation 
• const char* gfAudioEnvironmentManager::GetListenerEnv () [inline] 

o GetListenerEnv - gets a handle to the current listener environment. 

 

6. Member Data Documentation 
• gfAudioEnvironmentManager::GZ_DECLARE_TYPE_INTERFACE 

 
The documentation for this class was generated from the following files: 

• gfaudioenvironmentmanager.h 
• gfaudioenvironmentmanager.cpp 
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C. GFAUDIOENVIRONMENTTRANSITION CLASS REFERENCE 
#include <gfaudioenvironmenttransition.h> 
 

1. Public Methods 
• gfAudioEnvironmentTransition (gfAudioEnvironment *env1=NULL, 

gfAudioEnvironment *env2=NULL, gfShape *shape=NULL, const char *name=NULL) 
Constructor. 
 

• virtual ~gfAudioEnvironmentTransition () 
Destructor. 
 

• void SetAudioEnvironmentOne (gfAudioEnvironment *env) 
SetAudioEnvironmentOne - sets first audio environment. 
 

• void SetAudioEnvironmentTwo (gfAudioEnvironment *env) 
SetAudioEnvironmentTwo - sets second audio environment. 
 

• gfAudioEnvironment * GetAudioEnvironmentOne () 
GetAudioEnvironmentOne - gets first audio environment. 
 

• gfAudioEnvironment * GetAudioEnvironmentTwo () 
GetAudioEnvironmentTwo - gets second audio environment. 
 

• void SetAudioEnvironmentTransitionShape (gfShape *shape) 
SetAudioEnvironmentTransitionShape - sets the shape. 
 

• gfShape * GetAudioEnvironmentTransitionShape () 
GetAudioEnvironmentTransitionShape - gets the shape. 
 

• bool InsideEnvironmentTransition (sgVec3 pos) 
InsideEnvironmentTransition - checks whether pos is inside transition zone. 
 

• void SetTransitionEffect () 
SetTransitionEffect - combines and morphs two EAX environments. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 

Class: gfAudioEnvironmentTransition 

88 



Function: class to store coordinates and type of two audio environments for morphing between 
two audio reverb effects as listener moves between environments.  
 

4. Constructor and Destructor Documentation 
• gfAudioEnvironmentTransition::gfAudioEnvironmentTransition (gfAudioEnvironment 

* env1 = NULL, gfAudioEnvironment * env2 = NULL, gfShape * shape = NULL, const 
char * name = NULL) 

o Constructor. 
o Function: Constructor  
o Purpose: creates new gfAudioEnvironmentTransition  

 
• gfAudioEnvironmentTransition::~gfAudioEnvironmentTransition() [virtual] 

o Destructor. 
o Function: Destructor  
o Purpose: destroys gfAudioEnvironmentTransition  

 

5. Member Function Documentation 
• gfAudioEnvironment* gfAudioEnvironmentTransition::GetAudioEnvironmentOne () 

[inline] 
o GetAudioEnvironmentOne - gets first audio environment. 

 
• gfShape* gfAudioEnvironmentTransition::GetAudioEnvironmentTransitionShape () 

[inline] 
o GetAudioEnvironmentTransitionShape - gets the shape. 

 
• gfAudioEnvironment* gfAudioEnvironmentTransition::GetAudioEnvironmentTwo () 

[inline] 
o GetAudioEnvironmentTwo - gets second audio environment. 

 
• bool gfAudioEnvironmentTransition::InsideEnvironmentTransition (sgVec3 pos) 

o InsideEnvironmentTransition - checks whether pos is inside transition zone. 
o Function: InsideEnvironmentTransition  
o Purpose: indicates whether gfPosition lies inside shape of environment transition 

or not  
o Parameters:  

• pos  - the sgVec to check inside/outside  
o Returns:  

• bool - TRUE = inside; FALSE = outside  
 

• void gfAudioEnvironmentTransition::SetAudioEnvironmentOne (gfAudioEnvironment 
* env) 

o SetAudioEnvironmentOne - sets first audio environment. 
o Function: SetAudioEnvironmentOne  
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o Parameters:  
• env  - gfAudioEnvironment one  

 
• void gfAudioEnvironmentTransition:: SetAudioEnvironmentTransitionShape (gfShape 

* shape) 
o SetAudioEnvironmentTransitionShape - sets the shape. 
o Function: SetAudioEnvironmentTransitionShape  
o Purpose: sets audio environment transition zone shape  
o Parameters:  

• shape  - gfAudioEnvironmentTransition shape  
 

 
• void gfAudioEnvironmentTransition::SetAudioEnvironmentTwo (gfAudioEnvironment 

* env) 
o SetAudioEnvironmentTwo - sets second audio environment. 
o Function: SetAudioEnvironmentTwo  
o Purpose: sets audio environment two  
o Parameters:  

• env  - gfAudioEnvironment two  
 

 
• void gfAudioEnvironmentTransition::SetTransitionEffect () 

o SetTransitionEffect - combines and morphs two EAX environments. 
o Function: SetTransitionEffect  
o Purpose: sets the transitional reverb effect if in a transition zone  

 

6. Member Data Documentation 
• gfAudioEnvironmentTransition::GZ_DECLARE_TYPE_INTERFACE 

 
The documentation for this class was generated from the following files: 

• gfaudioenvironmenttransition.h 
• gfaudioenvironmenttransition.cpp 

 
 

D. GFAUDIONET CLASS REFERENCE 
#include <gfaudioglobal.h> 
 

1. Public Methods 
• gfAudioNet () 
• virtual ~gfAudioNet () 
 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
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3. Constructor and Destructor Documentation 
• gfAudioNet::gfAudioNet () 
• gfAudioNet::~gfAudioNet () [virtual] 

 

4. Member Data Documentation 
• gfAudioNet::GZ_DECLARE_TYPE_INTERFACE 

 
The documentation for this class was generated from the following files: 

• gfaudioglobal.h 
• gfaudioglobal.cpp 

 

E. GFCUBE CLASS REFERENCE 
#include <gfaudioenvironment.h> 
 

1. Public Methods 
• gfCube (float minX=0.0f, float maxX=1.0f, float minY=0.0f, float maxY=1.0f, float 

minZ=0.0f, float maxZ=1.0f) 
Constructor. 
 

• ~gfCube () 
Destructor. 
 

• void SetCube (float minX, float maxX, float minY, float maxY, float minZ, float maxZ) 
SetCube - sets the coordinates for the environment cube. 
 

• virtual void SetLocation (sgVec3 pos) 
SetLocation - sets the location for the shape. 
 

• bool Contains (sgVec3 pos) 
Contains - determines whether position inside cube. 
 

• void GetCenter (sgVec3 pos) 
GetCenter - gets the center point of the cube. 
 

• void Print () 
 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 

 
Class: gfCube Function: class for cube audio shape - aligned on coordinate axes  
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4. Constructor and Destructor Documentation 
• gfCube::gfCube (float minX = 0.0f, float maxX = 1.0f, float minY = 0.0f, float maxY = 

1.0f, float minZ = 0.0f, float maxZ = 1.0f) 
o Constructor. 
o Function: Constructor  
o Purpose: creates new gfCube  
o Parameters:  

� minX  - environment cube minimum x coordinate  
� maxX  - environment cube maximum x coordinate  
� minY  - environment cube minimum y coordinate  
� maxY  - environment cube maximum y coordinate  
� minZ  - environment cube minimum z coordinate  
� maxZ  - environment cube minimum z coordinate  

 
 

• gfCube::~gfCube () 
o Destructor. 
o Function: Destructor  
o Purpose: destroys gfCube  

 

5. Member Function Documentation 
• bool gfCube::Contains (sgVec3 pos) [virtual] 

o Contains - determines whether position inside cube. 
o Function: Contains  
o Purpose: determine whether the gfPosition is contained in the shape  
o Parameters:  

� pos  - the position to check for containment  
o Returns:  

� bool - TRUE = inside shape; FALSE = outside shape  
 

o Implements gfShape. 
 

• void gfCube::GetCenter (sgVec3 pos) [virtual] 
o GetCenter - gets the center point of the cube. 
o Function: GetCenter  
o Purpose: determine the center point of the cube  
o Parameters:  

� pos  - the position to fill in data  
 

o Implements gfShape  
 
• void gfCube::Print () 

o Function: Print  
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• void gfCube::SetCube (float minX, float maxX, float minY, float maxY, float minZ, float 

maxZ) 
o SetBox - sets the coordinates for the environment box. 
o Function: SetCube  
o Purpose: Creates a set of cube coordinates   
o Parameters:  

� minX  - environment cube minimum x coordinate  
� maxX  - environment cube maximum x coordinate  
� minY  - environment cube minimum y coordinate  
� maxY  - environment cube maximum y coordinate  
� minZ  - environment cube minimum z coordinate  
� maxZ  - environment cube minimum z coordinate  

 
 

• void gfCube::SetLocation (sgVec3 pos) [virtual] 
o SetLocation - sets the location for the shape. 
o Function: SetLocation  
o Purpose: sets the center location for the cube  
o Parameters:  

� pos  - the position of the center of the cube  
o Implements gfShape  

 

6. Member Data Documentation 
• gfCube::GZ_DECLARE_TYPE_INTERFACE 

 
Reimplemented from gfShape  

The documentation for this class was generated from the following files: 
• gfaudioenvironment.h 
• gfaudioenvironment.cpp 

 

F. GFLISTENER CLASS REFERENCE 
#include <gfListener.h> 
 

1. Public Methods 
• gfListener (const char *name=0) 

Constructor. 
 

• ~gfListener () 
Destructor. 
 

• void Position (gfPosition *pos) 
Position - positions the listener. 
 

• void SetObserver (gfObserver *obs) 
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SetObserver - sets gfObserver to tether with. 
 

• void SetObserver (const char *name) 
SetObserver - sets gfObserver to tether with (by name). 
 

• void SetDopplerFactor (float value) 
SetDopplerFactor - exaggerates doppler effect. 
 

• void SetRolloff (float value) 
SetRolloff - sets global rolloff. 
 

• void SetVelocity (sgVec3 vel) 
SetVelocity - velocity used in doppler effect. 
 

• void SetVelocity (sgVec3 dir, float spd) 
SetVelocity - velocity used in doppler effect. 
 

• void SetEnviron (gfAudioEnvironment::gfEnvironEnum env) 
SetEnviron - places listener in EAX environment using gfEnum. 
 

• void SetEnviron (EAXLISTENERPROPERTIES props) 
SetEnviron - places the listener in EAX environment using EAX's EAXLISTENERPROPERTIES struct. 
 

• void SetEnvironSize (float size) 
SetEnvironSize - sets the size of the room. 
 

• void Shutdown () 
Shutdown - shuts down the listener. 
 

• void CommitDeferredSettings () 
CommitDeferredSettings - commits all deferred settings. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Protected Methods 
• void Config (void) 

Config - configures listener. 
 

• virtual gzVoid onNotify (gzNotifyMessage *message) 
onNotify - internal messaging. 
 

4. Protected Attributes 
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• LPDIRECTSOUNDBUFFER pDSB 
• LPDIRECTSOUND3DLISTENER pDSListener 
• LPDIRECTSOUND3DBUFFER pDSB3D 
• LPKSPROPERTYSET pEAXListener 
• gzRefPointer< gfObserver > mObserver 
• sgVec3 mVelocity 
• float mVolume 
• bool isConfigured 
• float mRolloff 
• float mDoppler 
• bool eaxSupported 
 
5. Detailed Description 

 
Class: gfListener  
Function: class to provide for a movable, dynamic listener with 3 dimensions. Contains methods 
to get/set positions, orientations, Doppler factor, velocity, and rolloff.  Contains functionality to 
tether to a gfObserver for automatic positioning. 

• only one listener per context  
 

6. Constructor and Destructor Documentation 
• gfListener::gfListener (const char * name = 0) 

o Constructor. 
o Function: Constructor  
o Purpose: creates new gfListener  
o Parameters:  

� name  - optional name for listener  
 

 
• gfListener::~gfListener () 

o Destructor. 
o Function: Destructor  
o Purpose: Destroy this listener  

 

7. Member Function Documentation 
• void gfListener::CommitDeferredSettings () 

o CommitDeferredSettings - commits all deferred settings. 
o Function: SetEnviron  
o Purpose: Sets the EAX reverb model   
o Parameters:  

� env  - gfEnvironEnum representing selected EAX reverb model  
 

 
• void gfListener::Config (void) [protected] 

o Config - configures listener. 
o Function: Config  
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o Purpose: configures DirectSound objects and interfaces  
 

• gzVoid gfListener::onNotify (gzNotifyMessage * message) [protected, virtual] 
o onNotify - internal messaging. 
o Function: onNotify  
o Purpose: method called by gfObserver when position is updated  
o Parameters:  

� message  message from gfObserver notifying listener of position 
update  

 
• void gfListener::Position (gfPosition * pos) 

o Position - positions the listener. 
o Function: Position  
o Purpose: Sets the position and orientation of the listener  
o Parameters:  

� pos  - gfPosition with both position and orientation information  
 

 
• void gfListener::SetDopplerFactor (float factor) 

o SetDopplerFactor - exaggerates doppler effect. 
o Function: SetDopplerFactor  
o Purpose: Sets the Doppler factor for the listener - factor exaggerates real-world 

doppler effect  
o Parameters:  

� value  - the multiplicative factor to apply to real-world Doppler 
calculations Default: 1.0  

 
 

• void gfListener::SetEnviron (EAXLISTENERPROPERTIES props) 
o SetEnviron - places the listener in EAX environment using EAX's 

EAXLISTENERPROPERTIES struct. 
o Function: SetEnviron  
o Purpose: Sets the EAX reverb model   
o Parameters:  

� props  - EAXLISTENERPROPERTIES representing selected EAX 
reverb model  

 
• void gfListener::SetEnviron (gfAudioEnvironment::gfEnvironEnum env) 

o SetEnviron - places listener in EAX environment using gfEnum. 
o Function: SetEnviron  
o Purpose: Sets the EAX reverb model   
o Parameters:  

� env  - gfEnvironEnum representing selected EAX reverb model  
 

 
• void gfListener::SetEnvironSize (float size) 

o SetEnvironSize - sets the size of the room. 
o Function: SetEnvironSize  
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o Purpose: Sets the apparent room size only for EAX processing  
o Parameters:  

� size  - the virtual room size for EAX  
 

• void gfListener::SetObserver (const char * name) 
o SetObserver - sets gfObserver to tether with (by name). 
o Function: SetObserver  
o Purpose: Tethers this listener to a gfObserver; listener maintains positions with 

observer  
o Parameters:  

� name  - name of the observer to link with  
 

• void gfListener::SetObserver (gfObserver * obs) 
o SetObserver - sets gfObserver to tether with. 
o Function: SetObserver  
o Purpose: Tethers this listener to a gfObserver; listener maintains positions with 

observer  
o Parameters:  

� obs  - reference to the gfObserver to link with  
 

 
• void gfListener::SetRolloff (float factor) 

o SetRolloff - sets global rolloff. 
o Function: SetRolloff  
o Purpose: sets the sound rolloff factor.  The rolloff factor has a range of 

DS3D_MINROLLOFFFACTOR  (0-no rolloff) to 
DS3D_MAXROLLOFFFACTOR (as currently defined, 10 times the rolloff 
found in the real world).  The default value is 
DS3D_DEFAULTROLLOFFFACTOR (1.0). 

o Parameters:  
� factor  - from DS3D_MINROLLOFFFACTOR(0) to 

DS3D_MAXROLLOFFFACTOR(10)  
 

 
• void gfListener::SetVelocity (sgVec3 dir, float spd) 

o SetVelocity - velocity used in doppler effect. 
o Function: SetVelocity  
o Purpose: Sets the velocity for the listener - used in Doppler calculations  
o Parameters:  

� dir  - direction vector for velocity  
� spd  - speed for velocity calculations  

 
• void gfListener::SetVelocity (sgVec3 vel) 

o SetVelocity - velocity used in doppler effect. 
o Function: SetVelocity  
o Purpose: Sets the velocity for the listener - used in Doppler calculations  
o Parameters:  

� vel  - velocity vector  
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• void gfListener::Shutdown () 
o Shutdown - shuts down the listener. 
o Function: Shutdown  
o Purpose: shuts down listener and its DirectSound objects  

 

8. Member Data Documentation 
• bool gfListener::eaxSupported [protected] 

o indicates whether EAX is supported 
• gfListener::GZ_DECLARE_TYPE_INTERFACE 
• bool gfListener::isConfigured [protected] 

o indicates whether listener is configured 
• float gfListener::mDoppler [protected] 

o doppler factor  
• gzRefPointer<gfObserver> gfListener::mObserver [protected] 

o observer this listener is tethered to  
• float gfListener::mRolloff [protected] 

o rolloff factor  
• sgVec3 gfListener::mVelocity [protected] 

o current velocity of listener  
• float gfListener::mVolume [protected] 

o volume of listener - global setting affecting all sources  
• LPDIRECTSOUNDBUFFER gfListener::pDSB [protected] 
• LPDIRECTSOUND3DBUFFER gfListener::pDSB3D [protected] 

o DirectSound3D buffer - used to obtain EAX property set interface  
• LPDIRECTSOUND3DLISTENER gfListener::pDSListener [protected] 

o DirectSound listener  
• LPKSPROPERTYSET gfListener::pEAXListener [protected] 

o EAX property set interface  
The documentation for this class was generated from the following files: 

• gfListener.h 
• gfListener.cpp 

 

G. GFNETVOICE CLASS REFERENCE 
#include <gfnetvoice.h> 
 

1. Public Methods 
• gfNetVoice (bool host, const char *name=0) 

Constructor. 
 

• virtual ~gfNetVoice () 
Destructor. 
 

• void SetMinVoiceDistance (float value) 
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SetMinVoiceDistance - Sets the distance at which no further gain is applied moving towards the voice 
object. 
 

• void SetMaxVoiceDistance (float value) 
SetMaxVoiceDistance - Sets the maximum voice distance - distance at which no further attenuation 
occurs. 
 

• void SetOcclusion (int voice, long occlusion, float occlusionLF, float 
occlusionRoomRatio) 

SetOcclusion - sets the specified voice to be occluded. 
 

• void RemOcclusion (int voice) 
RemOcclusion - removes occlusion from the specified voice. 
 

• bool IsOccluded (int voice) 
IsOccluded - indicates whether voice is occluded. 
 

• void SetObstruction (int voice, long obstruction, float obstructionLF) 
SetObstruction - sets obstruction values for this sound. 
 

• void RemObstruction (int voice) 
RemObstruction - removes obstruction from this sound. 
 

• bool IsObstructed (int voice) 
IsObstructed - indicates whether voice is obstructed. 
 

• void SetExclusion (int voice, long exclusion, float exclusionLF) 
SetExclusion - sets exclusion values for this sound. 
 

• void RemExclusion (int voice) 
RemExclusion - removes exclusion from this sound. 
 

• bool IsExcluded (int voice) 
IsExcluded - indicates whether voice is excluded. 
 

• int GetNumVoices () 
GetNumVoices. 
 

• void GetVoicePosition (sgVec3 xyz, int Idx) 
GetVoicePosition - gets the position of the voice. 
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2. Detailed Description 
 
Class: gfNetVoice  
Function: class to provide for a movable, dynamic live voice with up to 63 remote voice clients.  
Contains methods to set minimum and maximum voice distances.  Manages setting occlusion, 
obstruction or exclusion for individual voices.  
 

3. Constructor and Destructor Documentation 
• gfNetVoice::gfNetVoice (bool host, const char * name = 0) 

o Constructor. 
o Function: Constructor  
o Purpose: creates new gfNetVoice  
o Parameters:  

� host  - bool indicating whether this gfNetVoice hosts the session; 
TRUE = hosting  

� name  - optional name for listener  
 

• gfNetVoice::~gfNetVoice () [virtual] 
o Destructor. 
o Function: Destructor  
o Purpose: Destroys gfNetVoice  

 

4. Member Function Documentation 
• int gfNetVoice::GetNumVoices () [inline] 

o Gets the number of current voices connected. 
 

• void gfNetVoice::GetVoicePosition (sgVec3 pos, int Idx) 
o GetVoicePosition - gets the position of the voice. 
o Function: GetVoicePosition  
o Purpose: Gets the position for the specified voice  
o Parameters:  

• pos  sgVec3 position to return with position values  
• Idx  index value in array of VOICE_INFO objects  

 
• bool gfNetVoice::IsExcluded (int voice) [inline] 

o IsExcluded - indicates whether voice is excluded. 
 

• bool gfNetVoice::IsObstructed (int voice) [inline] 
o IsObstructed - indicates whether voice is obsructed. 

 
• bool gfNetVoice::IsOccluded (int voice) [inline] 

o IsOccluded - indicates whether voice is occluded. 
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• void gfNetVoice::RemExclusion (int Idx) 
o RemExclusion - removes exclusion from this sound. 
o Function: RemExclusion  
o Purpose: Removes exclusion from this sound - sets default values  

 
• void gfNetVoice::RemObstruction (int Idx) 

o RemObstruction - removes obstruction from this sound. 
o Function: RemObstruction  
o Purpose: Removes obstruction from this sound - sets default values  

 
• void gfNetVoice::RemOcclusion (int Idx) 

o RemOcclusion - removes occlusion from the specified voice. 
o Function: RemOcclusion  
o Purpose: Removes occlusion from this sound - sets default values   
o Parameters:  

� voiceNum  index of voice in array of VOICE_INFO  
 

• void gfNetVoice::SetExclusion (int Idx, long exclusion, float exclusionLF) 
o SetExclusion - sets exclusion values for this sound. 
o Function: SetExclusion  
o Purpose: sets exclusion values for specified voice  
o Parameters:  

� Idx  index to the voice in array of VOICE_INFO  structs  
� exclusion  - the exclusion value for EAX; range [-10000, 0] -10000 

excludes sound to barely audible; 0 provides for no exclusion  
� exclusionLF  - ratio of low to high frequency attenuation; range [0.0, 

1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low 
and high freq attenuation Purpose: Sets the specified voice's exclusion 
settings  

 
• void gfNetVoice::SetMaxVoiceDistance (float dist) 

o SetMaxVoiceDistance - Sets the maximum voice distance - distance at which no 
further attenuation occurs. 

o Function: SetMaxVoiceDistance  
o Purpose: Sets the maximum voice distance - distance at which no further 

attenuation occurs Default is 1 billion, virtually ensuring continuous attenuation  
o Parameters:  

� value  - distance at which no further attenuation occurs  
 

• void gfNetVoice::SetMinVoiceDistance (float dist) 
o SetMinVoiceDistance - Sets the distance at which no further gain is applied 

moving towards the voice object. 
o Function: SetMinVoiceDistance  
o Purpose: Sets the distance at which no further gain is applied moving towards 

the voice object Ex: if minimum voice distance set to 10, from 0.0 to 10.0 voice 
intensity will be constant  

o Parameters:  
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• void gfNetVoice::SetObstruction (int Idx, long obstruction, float obstructionLF) 

o SetObstruction - sets obstruction values for this sound. 
o Function: SetObstruction  
o Purpose: Sets this voice's obstruction settings  
o Parameters:  

� Idx  index to the voice in array of VOICE_INFO structs  
� obstruction  - the obstruction value for EAX; range [-10000, 0] -10000 

obstructs sound to barely audible; 0 provides for no obstruction  
� obstructionLF  - ratio of low to high frequency attenuation; range [0.0, 

1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low 
and high freq attenuation  

 
• void gfNetVoice::SetOcclusion (int Idx, long occlusion, float occlusionLF, float 

occlusionRoomRatio) 
o SetOcclusionSettings - sets the specified voice to be occluded. 
o Function: SetOcclusion  
o Purpose: Sets this sound's occlusion settings  
o Parameters:  

� Idx  - the index of the VOICE_INFO to modify occlusion   
� occlusion  - the occlusion value for EAX; range [-10000, 0] -10000 

occludes sound to barely audible; 0 provides for no occlusion  
� occlusionLF  - ratio of low to high frequency attenuation; range [0.0, 

1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low 
and high freq attenuation  

� occlusionRoomRatio  - amount of occlusion to apply to non-direct path 
sound (reflections, reverberation) range [ 0.0, 10.0 ] 0.0 applies no 
additional occlusion to reflected/reverberated sounds; 10.0 (maximum) 
applies 10 times normal occlusion to non-direct path sound  

 
The documentation for this class was generated from the following files: 

• gfnetvoice.h 
• gfnetvoice.cpp 

 

H. GFSHAPE CLASS REFERENCE 
#include <gfaudioenvironment.h> 
 

1. Public Methods 
• gfShape () 

Constructor. 
 

• ~gfShape () 
Destructor. 
 

• void SetSize (float size=7.5) 
SetSize - sets the “room” size for the environment. 
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• float GetSize () 
GetSize - gets the size of the “room”. 
 

• virtual void SetLocation (sgVec3 pos)=0 
SetLocation - sets the location for the shape. 
 

• virtual void GetCenter (sgVec3 pos)=0 
GetCenter - gets the center position of the shape. 
 

• virtual bool Contains (sgVec3 pos)=0 
Contains - determines whether position inside shape (pure virtual function). 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Protected Attributes 
• float mSize 
 
4. Detailed Description 

 
Class: gfShape Function: base class for all audio shapes  
 

5. Constructor and Destructor Documentation 
• gfShape::gfShape () 

o Constructor. 
o Function: Constructor  
o Purpose: creates new gfShape  

 
• gfShape::~gfShape () 

o Destructor. 
o Function: Destructor  
o Purpose: destroys gfShape  

 

6. Member Function Documentation 
• virtual bool gfShape::Contains (sgVec3 pos) [pure virtual] 

o Contains - determines whether position inside shape (pure virtual function). 
o Implemented in gfCube and gfSphere. 

 
• virtual void gfShape::GetCenter (sgVec3 pos) [pure virtual] 

o GetCenter - gets the center position of the shape. 
o Implemented in gfCube and gfSphere. 

103 



 
• float gfShape::GetSize () [inline] 

o GetSize - gets the size of the “room”. 
 

• virtual void gfShape::SetLocation (sgVec3 pos) [pure virtual] 
o SetLocation - sets the location for the shape. 
o Implemented in gfCube, and gfSphere. 

 
• void gfShape::SetSize (float size = 7.5) 

o SetSize - sets the “room” size for the environment. 
o Function: SetSize  
o Purpose: sets the size of the shape for EAX purposes  
o Parameters:  

• size  - the size of the shape  
 

7. Member Data Documentation 
• gfShape::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented in gfCube and gfSphere. 
 

• float gfShape::mSize [protected] 
 
The documentation for this class was generated from the following files: 

• gfaudioenvironment.h 
• gfaudioenvironment.cpp 

 

I. GFSOUNDOBJECT CLASS REFERENCE 
#include <gfSoundObject.h> 
 

1. Public Types 
• enum gfSpatialEnum { GF_3D =  0, GF_2D } 
 
2. Public Methods 
• gfSoundObject (const char *filename, const char *name=0, bool networked=false, 

gfSpatialEnum type=GF_3D) 
Constructor. 
 

• ~gfSoundObject () 
Destructor - stops play and destroys this gfSoundObject. 
 

• const char * GetFileName () 
GetFileName - returns the filename of the sound. 
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• void Play (bool loop=false) 
Play - plays wave file; if loop = TRUE, then loop wav continuously. 
 

• bool IsPlaying () 
IsPlaying - TRUE if this sound is playing. 
 

• bool IsLooping () 
IsLooping - TRUE if this sound is looping. 
 

• void Stop () 
Stop - stops wave file. 
 

• void IncreasePitch (float value) 
IncreasePitch - increases pitch (frequency) of playing wave file. 
 

• void DecreasePitch (float value) 
DecreasePitch - decreases pitch (frequency) of playing wave file. 
 

• void SetPitch (float pitch) 
SetPitch - sets the frequency (pitch) of wave file. 
 

• void ResetPitch () 
ResetPitch - sets the frequency (pitch) of wave file to its original recorded frequency. 
 

• void SetPan (long pan) 
SetPan - sets the pan level for a 2D audio source. 
 

• void IncreaseVolume (float value) 
IncreaseVolume - increases gain, up to maximum level of original recording. 
 

• void DecreaseVolume (float value) 
DecreaseVolume - decreases gain, lower limit is 0.0 (mute). 
 

• void SetVolume (float volume) 
SetVolume - sets the gain for the sound object. 
 

• void Position (gfPosition *pos) 
Position - positions the sound object. 
 

• void Position (sgVec3 pos) 
Position - positions the sound object. 
 

• void SetRelative () 
SetRelative - sets this sound object relative to the listener. 
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• void SetNotRelative () 
SetNotRelative - releases this sound object from relative positioning. 
 

• bool IsRelative () 
IsRelative - returns whether sound is positioned relative to listener or world; TRUE = listener. 
 

• void SetMinDistance (float value=1.0f) 
SetMinDistance - distance away from sound object at which gain is clamped as you move closer to 
listener. 
 

• void SetMaxDistance (float value=1000000000.0f) 
SetMaxDistance - distance away from sound object at which gain does not further attenuate. 
 

• void SetTether (gfDynamic *obj) 
SetTether - sets this sound to tether to a gfDynamic derived class. 
 

• void SetConeDirection (float x, float y, float z) 
SetConeDirection - sets directivity. 
 

• void SetConeAngles (float, float) 
SetConeAngles - sets the width of the cone when sound is directional. 
 

• void SetConeOutsideVolume (float value) 
SetConeOutsideVolume - sets intensity (gain) of sound outside directional cone. 
 

• void SetOcclusion (long occlusion, float occlusionLF, float occlusionRoomRatio) 
SetOcclusion - sets occlusion values for this sound. 
 

• void RemOcclusion () 
RemOcclusion - removes occlusion from this sound. 
 

• bool IsOccluded () 
IsOccluded - TRUE indicates sound is occluded. 
 

• void SetObstruction (long obstruction, float obstructionLF) 
SetObstruction - sets obstruction values for this sound. 
 

• void RemObstruction () 
RemObstruction - removes obstruction from this sound. 
 

• bool IsObstructed () 
IsObstructed - TRUE indicates sound is obstructed. 
 

• void SetExclusion (long exclusion, float exclusionLF) 
SetExclusion - sets exclusion values for this sound. 
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• void RemExclusion () 

RemExclusion - removes exclusion from this sound. 
 

• bool IsExcluded () 
IsExcluded - TRUE indicates sound is excluded. 
 

• void SetNetworked (bool network) 
SetNetworked - sets whether this sound object is networked to remote clients. 
 

 
3. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
4. Protected Methods 
• void Config () 

Config - configures sound object. 
 

• bool ObtainResources () 
ObtainResources - creates buffers. 
 

• void ReleaseResources () 
Release - releases resources. 
 

• void CheckPlayingSounds () 
CheckPlayingSounds - checks to ensure all sounds that have buffers are playing. 
 

• int CreateNewSoundObject () 
CreateNewSoundObject - internal management and tracking of this sound object. 
 

• bool OpenWaveFile () 
OpenWaveFile - mmio reading method. 
 

• void ResetFile () 
ResetFile - mmio reset method. 
 

• void InitialBufferLoad () 
InitialBufferLoad - reads wave file into memory. 
 

• gzVoid onNotify (gzNotifyMessage *message) 
onNotify - internal messaging. 
 

• bool SetOcclusionSettings () 
SetOcclusionSettings. 
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• bool SetObstructionSettings () 
SetObstructionSettings. 
 

• bool SetExclusionSettings () 
SetExclusionSettings. 
 

• void Send (gfSoundActionEnum action) 
Send - sends gfSoundActionPacket to network. 

 
5. Protected Attributes 
• LPDIRECTSOUNDBUFFER pDSB 
• LPDIRECTSOUND3DBUFFER pDSB3D 
• LPKSPROPERTYSET pEAXSource 
• gfSpatialEnum mType 
• gzRefPointer< gfDynamic > mTether 
• unsigned long mPitch 
• long mVolume 
• long mPan 
• float mMinDistance 
• float mMaxDistance 
• float mMinConeAngle 
• float mMaxConeAngle 
• float mOuterConeVolume 
• sgVec3 mConeDirection 
• char m_Filename [128] 
• HMMIO m_hMmioFile 
• DSBUFFERDESC m_DSBufDesc 
• UINT BytesToEndOfFile 
• UINT DataChunkSize 
• UINT DataChunkOffset 
• bool isConfigured 
• bool mPlay 
• bool mLooping 
• long mOcc 
• float mOccLF 
• float mOccRoomRatio 
• long mObstr 
• float mObstrLF 
• long mExcl 
• float mExclLF 
• bool eaxSupported 
• bool mRel 
• bool isObstructed 
• bool isOccluded 
• bool isExcluded 
• bool isNetworked 
 
6. Detailed Description 
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Class: gfSoundObject  
Function: class to represent a 2D or 3D sound source.  2D capabilities: volume control, pitch 
control, pans left/right 3D capabilities: distance attenuation, velocity (Doppler) positioning, pitch, 
volume, and environmental effects. 

• Can be linked to a visual object or stand alone 
• gfSoundObjects have occlusion, obstruction, and exclusion settings that are specific to 

the sound loaded when 3D NOTE: Most sound cards are limited in the number of 3D 
and 2D hardware buffers - for sounds that do not require spatialization, utilize 2D 
settings  

 
7. Member Enumeration Documentation 
• enum gfSoundObject::gfSpatialEnum 

o Enumeration values: 
� GF_3D   
� GF_2D   

 

8. Constructor and Destructor Documentation 
• gfSoundObject::gfSoundObject (const char * filename, const char * name = 0, bool 

networked = false, gfSpatialEnum type = GF_3D) 
o Constructor. 
o Function: Constructor  
o Purpose: creates new gfSoundObject  
o Parameters:  

� name  - optional name for sound object  
• gfSoundObject::~gfSoundObject () 

o Destructor - stops play and destroys this gfSoundObject. 
o Function: Destructor  
o Purpose: Destroy this sound object  

 

9. Member Function Documentation 
• void gfSoundObject::CheckPlayingSounds () [protected] 

o CheckPlayingSounds - checks to ensure all sounds that have buffers are playing. 
o Function: OpenWaveFile  
o Purpose: opens wave file header for reading file information  

 
• void gfSoundObject::Config (void) [protected] 

o Config - configures sound object. 
o Function: Config  
o Purpose: configures variables and DirectSound objects  

 
• int gfSoundObject::CreateNewSoundObject () [protected] 

o CreateNewSoundObject - internal management and tracking of this sound 
object. 
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o Purpose: creates new gfSoundObject and stores it in global sound object list  
o Parameters:  

� int  - integer representing number of sound objects  
 

• void gfSoundObject::DecreasePitch (float amount) 
o DecreasePitch - decreases pitch (frequency) of playing wave file. 
o Function: DecreasePitch  
o Purpose: Decreases the pitch (frequency) of this sound object by the given value  
o Parameters:  

� value  - the amount of the pitch decrease  
 

• void gfSoundObject::DecreaseVolume (float amount) 
o DecreaseVolume - decreases gain, lower limit is 0.0 (mute). 
o Function: DecreaseVolume  
o Purpose: Decreases the volume (intensity) level by the given value  
o Parameters:  

� value  - the amount of volume (intensity) to decrease  
 

• const char* gfSoundObject::GetFileName () [inline] 
o GetFileName - returns the filename of the sound. 

 
• void gfSoundObject::IncreasePitch (float amount) 

o IncreasePitch - increases pitch (frequency) of playing wave file. 
o Function: IncreasePitch  
o Purpose: Increases the pitch (frequency) of this sound object by the given value  
o Parameters:  

� value  - the amount of the pitch increase  
 

• void gfSoundObject::IncreaseVolume (float amount) 
o IncreaseVolume - increases gain, up to maximum level of original recording. 
o Function: IncreaseVolume  
o Purpose: Increases the volume (intensity) level by the given value  
o Parameters:  

� value  - the amount of volume (intensity) to increase  
 

• void gfSoundObject::InitialBufferLoad () [protected] 
o InitialBufferLoad - reads wave file into memory. 
o Function: Constructor  
o Purpose: creates new gfListener   
o Parameters:  

� name  - optional name for listener  
 

• bool gfSoundObject::IsExcluded () [inline] 
o IsExcluded - TRUE indicates sound is excluded. 

 
• bool gfSoundObject::IsLooping () 
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o IsLooping - TRUE if this sound is looping. 
o Function: IsLooping  
o Purpose: indicate whether this sound object is looping  
o Returns:  

� bool TRUE if looping; FALSE if not  
 

• bool gfSoundObject::IsObstructed () [inline] 
o IsObstructed - TRUE indicates sound is obstructed. 

 
• bool gfSoundObject::IsOccluded () [inline] 

o IsOccluded - TRUE indicates sound is occluded. 
 

• bool gfSoundObject::IsPlaying () 
o IsPlaying - TRUE if this sound is playing. 
o Function: IsPlaying  
o Purpose: indicate whether this sound object is playing   
o Returns:  

• bool TRUE if playing; FALSE if not  
 

• bool gfSoundObject::IsRelative () [inline] 
o IsRelative - returns whether sound is positioned relative to listener or world; 

TRUE = listener. 
 

• bool gfSoundObject::ObtainResources () [protected] 
o ObtainResources - creates buffers. 
o Function: ObtainResources  
o Purpose: configures DirectSound derived objects  

 
• gzVoid gfSoundObject::onNotify (gzNotifyMessage * message) [protected] 

o onNotify - internal messaging. 
o Function: onNotify  
o Purpose: Internal message handler  
o Parameters:  

• message  - Gizmo3D message struct - used internally  
 

• bool gfSoundObject::OpenWaveFile () [protected] 
o OpenWaveFile - mmio reading method. 
o Function: OpenWaveFile  
o Purpose: opens wave file header for reading file information  

 
• void gfSoundObject::Play (bool loop = false) 

o Play - plays wave file; if loop = TRUE, then loop wav continuously. 
o Function: Play  
o Purpose: Plays this sound object  
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• void gfSoundObject::Position (sgVec3 pos) 

o Position - positions the sound object. 
o Function: Position  
o Purpose: Position this sound object  
o Parameters:  

• pos  - sgVec for new position of sound object  
• void gfSoundObject::Position (gfPosition * pos) 

o Position - positions the sound object. 
o Function: Position  
o Purpose: Position this sound object  
o Parameters:  

• pos  - gfPosition for new position of sound object  
 

• void gfSoundObject::ReleaseResources () [protected] 
o Release - releases resources. 
o Function: Release  
o Purpose: Releases resources for this sound object  

 
• void gfSoundObject::RemExclusion () 

o RemExclusion - removes exclusion from this sound. 
o Function: RemExclusion  
o Purpose: Removes exclusion from this sound - sets default values  

 
• void gfSoundObject::RemObstruction () 

o RemObstruction - removes obstruction from this sound. 
o Function: RemObstruction  
o Purpose: Removes obstruction from this sound - sets default values  

 
• void gfSoundObject::RemOcclusion () 

o RemOcclusion - removes occlusion from this sound. 
o Function: RemOcclusion  
o Purpose: Removes occlusion from this sound - sets default values  

 
• void gfSoundObject::ResetFile () [protected] 

o ResetFile - mmio reset method. 
o Function: ResetFile  
o Purpose: resets the mmio read function for reading wave data after header 

determination  
 

• void gfSoundObject::ResetPitch () 
o ResetPitch - sets the frequency (pitch) of wave file to its original recorded 

frequency. 
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o Function: ResetPitch  
o Purpose: Sets the frequency (pitch) of this sound object to its original recorded 

frequency  
 

• void gfSoundObject::Send (gfSoundActionEnum action) [protected] 
o Send - sends gfSoundActionPacket to network. 
o Function: Send  
o Purpose: Sets the sound to automatically transmit play, stop calls to the network  
o Parameters:  

• network  TRUE = transmit automatically; FALSE = no transmission  
 

• void gfSoundObject::SetConeAngles (float inner, float outer) 
o SetConeAngles - sets the width of the cone when sound is directional. 
o Function: SetConeAngles  
o Purpose: sets the angular measurement for inner and outer cones directivity 

scenario  
o Parameters:  

• inner  the inner angle  
• outer  the outer angle  

 
• void gfSoundObject::SetConeDirection (float x, float y, float z) 

o SetConeDirection - sets directivity. 
o Function: SetConeDirection  
o Purpose: sets the directivity of the cone   
o Parameters:  

• x  - look at x direction  
• x  - look at y direction  
• x  - look at z direction  

 
• void gfSoundObject::SetConeOutsideVolume (float vol) 

o SetConeOutsideVolume - sets intensity (gain) of sound outside directional cone. 
o Function: SetConeOutsideVolume  
o Purpose: Sets the outside cone volume Outside cone volume is the attenuation 

applied outside the cone of directivity  
o Parameters:  

• value  - gain value for the volume outside the directed cone; 0 = no 
volume range = (0.0f, inf)  

 
• void gfSoundObject::SetExclusion (long exclusion, float exclusionLF) 

o SetExclusion - sets exclusion values for this sound. 
o Function: SetExclusion  
o Purpose: Sets this sound's exclusion settings  
o Parameters:  

• exclusion  - the exclusion value for EAX; range [-10000, 0] -10000 
excludes sound to barely audible; 0 provides for no exclusion  

• exclusionLF  - ratio of low to high frequency attenuation; range [0.0, 
1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low 
and high freq attenuation  
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• bool gfSoundObject::SetExclusionSettings () [protected] 

o SetExclusionSettings. 
o Function: SetExclusionSettings  
o Purpose: Sets the respective exclusion values into the EAX property set   
o Returns:  

• bool TRUE = exclusion values successfully set  
 

• void gfSoundObject::SetMaxDistance (float distance = 1000000000.0f) 
o MaxDistance - distance away from sound object at which gain does not further 

attenuate. 
o Function: MaxDistance  
o Purpose: Sets the distance at which no further attenuation is applied moving 

away from sound object  
o Parameters:  

• value  - the maximum distance - defaults to 1 billion  
 

• void gfSoundObject::SetMinDistance (float distance = 1.0f) 
o MinDistance - distance away from sound object at which gain is clamped as you 

move closer to listener. 
o Function: MinDistance  
o Purpose: Sets the distance at which no further gain is applied moving towards 

the sound object  
o Parameters:  

• value  - the minimum distance - defaults to 1.0f  
 

• void gfSoundObject::SetNetworked (bool network) 
o SetNetworked - sets whether this sound object is networked to remote clients. 
o Function: SetNetworked  
o Purpose: Sets the sound to automatically transmit play, stop calls to the network  
o Parameters:  

• network  TRUE = transmit automatically; FALSE = no transmission  
 

• void gfSoundObject::SetNotRelative () 
o RemoveRelative - releases this sound object from relative positioning. 
o Function: RemoveRelative  
o Purpose: Sets this sound object to be positioning globally; all subsequent calls to 

Position() will place this sound object in global coordinates  
 

• void gfSoundObject::SetObstruction (long obstruction, float obstructionLF) 
o SetObstruction - sets obstruction values for this sound. 
o Function: SetObstruction  
o Purpose: Sets this sound's obstruction settings  
o Parameters:  

� obstruction  - the obstruction value for EAX; range [-10000, 0] -10000 
obstructs sound to barely audible; 0 provides for no obstruction  
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� obstructionLF  - ratio of low to high frequency attenuation; range [0.0, 
1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low 
and high freq attenuation  

 
• bool gfSoundObject::SetObstructionSettings () [protected] 

o SetObstructionSettings. 
o Function: SetOcclusion  
o Purpose: Sets the respective occlusion values into the EAX property set  
o Returns:  

� bool TRUE = obstruction values successfully set  
 

• void gfSoundObject::SetOcclusion (long occlusion, float occlusionLF, float 
occlusionRoomRatio) 

o SetOcclusion - sets occlusion values for this sound. 
o Function: SetOcclusion  
o Purpose: Sets this sound's occlusion settings  
o Parameters:  

� occlusion  - the occlusion value for EAX; range [-10000, 0] -10000 
occludes sound to barely audible; 0 provides for no occlusion  

� occlusionLF  - ratio of low to high frequency attenuation; range [0.0, 
1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low 
and high freq attenuation  

� occlusionRoomRatio  - amount of occlusion to apply to non-direct path 
sound (reflections, reverberation) range [ 0.0, 10.0 ] 0.0 applies no 
additional occlusion to reflected/reverberated sounds; 10.0 (maximum) 
applies 10 times normal occlusion to non-direct path sound  

 
• bool gfSoundObject::SetOcclusionSettings () [protected] 

o SetOcclusionSettings. 
o Function: SetOcclusionSettings  
o Purpose: Sets the respective occlusion values into the EAX property set  
o Returns:  

� bool TRUE = occlusion settings successfully completed  
 

• void gfSoundObject::SetPan (long pan) 
o SetPan - sets the pan level for a 2D audio source. 
o Function: SetPan  
o Purpose: sets the pan left or right for a 2D audio source  
o Parameters:  

� pan  - the amount of the pan The value in pan is measured in 
hundredths of a decibel (dB), in the range of DSBPAN_LEFT to 
DSBPAN_RIGHT. These values are currently defined in Dsound.h as –
10,000 and 10,000 respectively.  The value DSBPAN_LEFT means the 
right channel is attenuated by 100 dB.  The value DSBPAN_RIGHT 
means the left channel is attenuated by 100 dB.  The neutral value is 
DSBPAN_CENTER, defined as zero.  This value of 0 in the pan 
parameter means that both channels are at full volume  (they are 
attenuated by 0 decibels).  At any setting other than 
DSBPAN_CENTER, one of the channels is at full volume and the 
other is attenuated.  
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• void gfSoundObject::SetPitch (float pitch) 
o SetPitch - sets the frequency (pitch) of wave file. 
o Function: SetPitch  
o Purpose: Sets the frequency (pitch) of this sound object; range (0.0f, inf] A 

value of DSBFREQUENCY_ORIGINAL resets back to the original value.  
o Parameters:  

� pitch  - the frequency (pitch) to set; range (100.0, 100,000.0)  
 

• void gfSoundObject::SetRelative () 
o SetRelative - sets this sound object relative to the listener. 
o Function: SetRelative  
o Purpose: Sets this sound object to be positioning relative to gfListener; all 

subsequent calls to Position() will place this sound object in relative positions to 
the one listener in the given context  

 
• void gfSoundObject::SetTether (gfDynamic * obj) 

o SetTethered - sets this sound to tether to a gfDynamic derived class. 
o Function: SetTether  
o Purpose: Sets the gfDynamic derived class this gfSoundObject is tethered to for 

positioning  
o Parameters:  

• obj  - pointer to a gfDynamic derived class to tether to  
 

• void gfSoundObject::SetVolume (float volume) 
o SetVolume - sets the gain for the sound object. 
o Function: SetVolume   
o Purpose: set the volume of the sound object.  The volume is specified in 

hundredths of decibels (dB).  Allowable values are between 
DSBVOLUME_MAX (no attenuation) and DSBVOLUME_MIN (silence).  
These values are currently defined in Dsound.h as 0 and -10,000 respectively.  
The value DSBVOLUME_MAX represents the original, unadjusted volume of 
the stream.  The value DSBVOLUME_MIN indicates an audio volume 
attenuated by 100 dB, which, for all practical purposes, is silence.  Currently 
DirectSound does not support amplification.  

o Parameters:  
• volume  the amount of volume (GAIN)  

 
• void gfSoundObject::Stop () 

o Stop - stops wave file. 
o Function: Stop Purpose: Stops playing on this sound object  

 

10. Member Data Documentation 
• UINT gfSoundObject::BytesToEndOfFile [protected] 

o buffer description  = bytes to the end of the file 
• UINT gfSoundObject::DataChunkOffset [protected] 

o number of bytes in offset  
• UINT gfSoundObject::DataChunkSize [protected] 

116 



o number of bytes in chunk  
• bool gfSoundObject::eaxSupported [protected] 

o whether EAX is supported  
• gfSoundObject::GZ_DECLARE_TYPE_INTERFACE 
• bool gfSoundObject::isConfigured [protected] 

o whether sound object is configured  
• bool gfSoundObject::isExcluded [protected] 

o indicates whether sound is excluded  
• bool gfSoundObject::isNetworked [protected] 

o indicates whether sound is networked  
• bool gfSoundObject::isObstructed [protected] 

o indicates whether sound is obstructed  
• bool gfSoundObject::isOccluded [protected] 

o indicates whether sound is occluded  
• DSBUFFERDESC gfSoundObject::m_DSBufDesc [protected] 

o buffer description  
• char gfSoundObject::m_Filename[128] [protected] 

o file name for the wave file  
• HMMIO gfSoundObject::m_hMmioFile [protected] 

o mmio file used to read wave file  
• sgVec3 gfSoundObject::mConeDirection [protected] 

o cone direction  
• long gfSoundObject::mExcl [protected] 

o exclusion setting 
• float gfSoundObject::mExclLF [protected] 

o exclusion setting for low frequencies  
• bool gfSoundObject::mLooping [protected] 

o indicates sound is looping 
• float gfSoundObject::mMaxConeAngle [protected] 

o maximum cone angle  
• float gfSoundObject::mMaxDistance [protected] 

o maximum distance  
• float gfSoundObject::mMinConeAngle [protected] 

o minimum cone angle  
• float gfSoundObject::mMinDistance [protected] 

o min distance 
• long gfSoundObject::mObstr [protected] 

o obstruction setting  
• float gfSoundObject::mObstrLF [protected] 

o obstruction setting for low frequencies 
• long gfSoundObject::mOcc [protected] 

o occlusion setting  
• float gfSoundObject::mOccLF [protected] 

o occlusion setting for low frequencies 
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• float gfSoundObject::mOccRoomRatio [protected] 
o occlusion room ratio setting  

• float gfSoundObject::mOuterConeVolume [protected] 
o volume setting for outside cone areas  

• long gfSoundObject::mPan [protected] 
o stored pan value  

• unsigned long gfSoundObject::mPitch [protected] 
o stored pitch value  

• bool gfSoundObject::mPlay [protected] 
o indicates gfSoundObject is playing or Play() called prior to config()  

• bool gfSoundObject::mRel [protected] 
o indicates sound is relative to listener  

• gzRefPointer<gfDynamic> gfSoundObject::mTether [protected] 
o gfObject to tether this sound to for positioning  

• gfSpatialEnum gfSoundObject::mType [protected] 
o type of sound object - either GF_2D or GF_3D 

• long gfSoundObject::mVolume [protected] 
o stored volume value 

• LPDIRECTSOUNDBUFFER gfSoundObject::pDSB [protected] 
o secondary sound buffer 

• LPDIRECTSOUND3DBUFFER gfSoundObject::pDSB3D [protected] 
o DirectSound3D buffer  - for 3D positioning 

• LPKSPROPERTYSET gfSoundObject::pEAXSource [protected] 
o EAX property set interface  

 
The documentation for this class was generated from the following files: 

• gfSoundObject.h 
• gfSoundObject.cpp 

 

J. GFSPHERE CLASS REFERENCE 
#include <gfaudioenvironment.h> 
 

1. Public Methods 
• gfSphere (float x=0.0f, float y=0.0f, float z=0.0f, float radius=1.0f) 

Constructor - optional args for sphere center and radius. 
 

• ~gfSphere () 
Destructor. 
 

• void SetSphere (float x, float y, float z, float radius) 
SetSphere - sets environment sphere. 
 

• virtual void SetLocation (sgVec3 pos) 
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SetLocation - sets the location for the shape. 
 

• bool Contains (sgVec3 pos) 
Contains - determines whether position inside sphere. 
 

• void GetCenter (sgVec3 pos) 
GetCenter - gets the center point of the sphere. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 

 
Class: gfSphere  
Function: class for sphere audio shape  
 

4. Constructor and Destructor Documentation 
• gfSphere::gfSphere (float x = 0.0f, float y = 0.0f, float z = 0.0f, float radius = 1.0f) 

o Constructor - optional args for sphere center and radius. 
o Function: Constructor  
o Purpose: creates new gfSphere  
o Parameters:  

� x  - sphere center x coordinate  
� y  - sphere center y coordinate  
� z  - sphere center z coordinate  
� radius  - sphere radius  

 
• gfSphere::~gfSphere () 

o Destructor. 
o Function: Destructor  
o Purpose: destroys gfSphere  

 

5. Member Function Documentation 
• bool gfSphere::Contains (sgVec3 pos) [virtual] 

o Contains - determines whether position inside sphere. 
o Function: Contains  
o Purpose: determine whether the gfPosition is contained in the shape  
o Parameters:  

� pos  - the position to check for containment  
o Returns:  

� bool - TRUE = inside shape; FALSE = outside shape  
o Implements gfShape. 
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• void gfSphere::GetCenter (sgVec3 pos) [virtual] 
o GetCenter - gets the center point of the sphere. 
o Function: GetCenter  
o Purpose: determine the center point of the cube  
o Parameters:  

� pos  - the position to fill in data  
o Implements gfShape). 

 
• void gfSphere::SetLocation (sgVec3 pos) [virtual] 

o SetLocation - sets the location for the shape. 
o Function: SetLocation  
o Purpose: sets the center location for the sphere  
o Parameters:  

� pos  - the position of the center of the sphere 
o Implements gfShape. 

 
• void gfSphere::SetSphere (float x, float y, float z, float radius) 

o SetSphere - sets environment sphere. 
o Function: SetSphere  
o Purpose: sets the shape of the sphere; size and radius  
o Parameters:  

� x  - sphere center x coordinate  
� y  - sphere center y coordinate  
� z  - sphere center z coordinate  
� radius  - sphere radius  

 

6. Member Data Documentation 
• gfSphere::GZ_DECLARE_TYPE_INTERFACE 

 
o Reimplemented from gfShape. 

 
The documentation for this class was generated from the following files: 

• gfaudioenvironment.h 
• gfaudioenvironment.cpp 

 

K. VOICE_INFO STRUCT REFERENCE 
#include <gfnetvoice.h> 
 

1. Public Attributes 
• DWORD id 
• LPDIRECTSOUND3DBUFFER pDSB3D 
• LPKSPROPERTYSET pEAXvoice 
• long mOcc 
• float mOccLF 
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• float mOccRoomRatio 
• bool isOccluded 
• long mObstr 
• float mObstrLF 
• bool isObstructed 
• long mExcl 
• float mExclLF 
• bool isExcluded 
• float mX 
• float mY 
• float mZ 
 
2. Detailed Description 

 
Struct: VOICE_INFO  
Function: struct to store information about each remote voice client.  Contains necessary 
DirectVoice buffers for 3D spatialization Permits setting of occlusion, obstruction or exclusion 
for individual voices.  
 

3. Member Data Documentation 
• DWORD VOICE_INFO::id 
• bool VOICE_INFO::isExcluded 

o indicates whether voice is excluded  
• bool VOICE_INFO::isObstructed 

o indicates whether voice is obstructed  
• bool VOICE_INFO::isOccluded 

o indicates whether voice is occluded 
• long VOICE_INFO::mExcl 

o voice exclusion setting  
• float VOICE_INFO::mExclLF 

o voice exclusion setting for low frequencies 
• long VOICE_INFO::mObstr 

o voice obstruction setting  
• float VOICE_INFO::mObstrLF 

o voice obstruction setting for low frequencies 
• long VOICE_INFO::mOcc 

o voice occlusion setting 
• float VOICE_INFO::mOccLF 

o voice occlusion setting for low frequencies  
• float VOICE_INFO::mOccRoomRatio 

o voice occlusion room ratio setting  
• float VOICE_INFO::mX 

o voice x position  
• float VOICE_INFO::mY 

o voice y position  
• float VOICE_INFO::mZ 
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o voice z position 
• LPDIRECTSOUND3DBUFFER VOICE_INFO::pDSB3D 

o 3D sound buffer for voice 
• LPKSPROPERTYSET VOICE_INFO::pEAXvoice 

o EAX property interface for voice  
 
The documentation for this struct was generated from the following file: 

• gfnetvoice.h 
• gfnetvoice.cpp 
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APPENDIX B. AUSERVERLIB DOCUMENTATION 

A. AUBASE CLASS REFERENCE 
#include <aubase.h> 
 

1. Public Methods 
• void SendNotify (char *message, auRefData *data) 

SendNotify - pass messages internally. 
 

• void AddNotifier (auBase *notifier) 
AddNotifier - registers auClass with caller. 
 

• bool IsOfClass (gzType *type) const 
• bool IsExactlyClass (gzType *type) const 
• virtual void SetName (const char *name) 

SetName - sets the name of this object. 
 

• virtual const char * GetName () const 
• auBase () 
• virtual ~auBase () 

Destructor. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Protected Attributes 
• char mName [128] 
 
4. Detailed Description 

 
Class: auBase Function:  
Base class from which all other auClasses are derived from.  Supplies basic naming, printing and 
class reference methods.  
 

5. Constructor and Destructor Documentation 
• auBase::auBase () [inline] 

o Construct a new auBase. auBase is a pure virtual object and  therefore cannot be 
created on its own. Only derived classes which implement the virtual methods 
may be constructed.  

• virtual auBase::~auBase () [inline, virtual] 
o Destructor. 
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6. Member Function Documentation 
• void auBase::AddNotifier (auBase * notifier) 

o AddNotifier - registers auClass with caller. 
o Tell this object to subscribe to notifier's messages.  Notifier must be an object 

derived from gfBase. 
o See also: 

� SendNotify() 
o Parameters: 

� notifier  - The object to receive messages from 
 

• virtual const char* auBase::GetName () const [inline, virtual] 
o GetName - Get the name of object  

 
• bool auBase::IsExactlyClass (gzType * type) const [inline] 

o Is this instance exactly the passed class type?  Get the gzType by calling 
getClassType()  

 
• bool auBase::IsOfClass (gzType * type) const [inline] 

o Is this instance derived from the passed class type?  Get the gzType by calling 
getClassType()  

 
• void auBase::SendNotify (char * message, auRefData * data) 

o SendNotify - pass messages internally. 
o Send a message from this object to any other object that subscribed to this 

object.  A text string and gfRefData can be sent in the message.  Any subscriber 
to this object can then parse the text string and user data. 

o Parameters:  
• message  - Text string to send in message  
• data  - Any additional data that needs to be sent with this message  

o See also:  
• AddNotifier()  

 
• void auBase::SetName (const char * name) [virtual] 

o SetName - sets the name of this object. 

 

7. Member Data Documentation 
• auBase::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented in auChannel, auListener, auSound auSource, and 
auSystem. 

 
• char auBase::mName[128] [protected] 

o Reimplemented in auSource. 
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The documentation for this class was generated from the following files: 
• aubase.h 
• aubase.cpp 

 

B. AUCHANNEL CLASS REFERENCE 
#include <auchannel.h> 
 

1. Public Methods 
• auChannel (int channel, const char *name=0) 

Constructor. 
 

• virtual ~auChannel () 
Destructor. 
 

• bool SetChannel (int channel) 
SetChannel - sets input ausim3D channel. 
 

• int GetChannel (void) 
• bool LinkToListener (auListener *listener) 

LinkToListener - links source to specified auListener. 
 

• bool UnLink () 
Unlink - unlinks source to all auListeners. 
 

• bool SetExclusive (auListener *listener) 
SetExclusive - directs this channel exclusively to specified listener. 
 

• bool RemExclusive () 
RemExclusive - removes any exclusivity of this source to any listener. 
 

• bool SetVolumeForListener (auListener *listener, float dB) 
SetVolumeForListener - sets volume to the specified listener. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 

 
Class: auChannel  
Function: Class representing all aspects of an ausim source generated from a live audio feed.  
Contains methods for setting/getting source position, radiation patterns, names, and source-
specific rolloff.  Contains methods to link/unlink to specified listener.  
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4. Constructor and Destructor Documentation 
• auChannel::auChannel (int channel, const char * name = 0) 

o Constructor. 
o Function: Constructor  
o Purpose: Creates new channel  
o Parameters:  

� channel  - channel number of this channel - corresponds to input on 
ausim3D  

� name  - string for name of this channel  
 

• auChannel::~auChannel () [virtual] 
o Destructor. 
o Function: Destructor  
o Purpose: Destroys this channel  

 

5. Member Function Documentation 
• int auChannel::GetChannel (void) [inline] 

o GetChannel - gets input ausim3D channel  
 

• bool auChannel::LinkToListener (auListener * listener) 
o LinkToListener - links source to specified auListener. 
o Function: LinkToListener  
o Purpose: Link this source to the specified auListener  
o Parameters:  

• listener  - the auListener to link with  
 

• bool auChannel::RemExclusive () 
o RemExclusive - removes any exclusivity of this source to any listener. 
o Function: RemExclusive  
o Purpose: removes any exclusivity setting from this sound  

 
• bool auChannel::SetChannel (int channel) 

o SetChannel - sets input ausim3D channel. 
o Function: SetChannel  
o Purpose: Set the channel for this course  
o Parameters:  

� channel  - the channel of this source  
 

• bool auChannel::SetExclusive (auListener * listener) 
o SetExclusive - directs this channel exclusively to specified listener. 
o Function: SetExclusive  
o Purpose: sets this channel to only be heard by specified listener  
o Parameters:  
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� listener  - the exclusive auListener to be heard by  
 

• bool auChannel::SetVolumeForListener (auListener * listener, float volume) 
o SetVolumeForListener - sets volume to the specified listener. 
o Function: SetVolumeForListener  
o Purpose: sets this channel's volume for a specified listener  
o Parameters:  

� listener  - the auListener  
 

• bool auChannel::UnLink () 
o Unlink - unlinks source to all auListeners. 
o Function: LinkToListener  
o Purpose: Link this source to the specified auListener  
o Parameters:  

� listener  - the auListener to link with  
 

6. Member Data Documentation 
• auChannel::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented from auSource. 
 
The documentation for this class was generated from the following files: 

• auchannel.h 
• auchannel.cpp 

 

C. AULIST CLASS REFERENCE 
#include <aulist.h> 
 

1. Public Methods 
• auList (int numElements=0) 

Constructor. 
 

• virtual ~auList () 
Destructor. 
 

• void Rem (auBase *data) 
Rem - removes object from list. 
 

• int GetNum (void) 
GetNum - gets the number of objects in the list. 
 

• void * Get (const int elementIdx) 
Get - gets the object at the specified index. 
 

• void Add (auBase *data) 
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Add - adds an object to the end of the list. 
 

• void InsertAt (auBase *data, int elementIdx) 
InsertAt - inserts an object at the specified index in the list. 
 

• void Clear (void) 
Clear - removes all objects from the list. 
 

2. Constructor and Destructor Documentation 
• auList::auList (int numElements = 0) 

o Constructor. 
o Function: Constructor  
o Purpose: Creates new auList  
o Parameters:  

� numElements  - number of initial slots for elements  
 

• auList::~auList () [virtual] 
o Destructor. 
o Function: Destructor  
o Purpose: Destroys auList  

 

3. Member Function Documentation 
• void auList::Add (auBase * data) 

o Add - adds an object to the end of the list. 
o Function: Add  
o Purpose: Add an element to the list  
o Parameters:  

� data  auBase derived object to add to the list  
 

• void auList::Clear (void) 
o Clear - removes all objects from the list. 
o Function: Clear  
o Purpose: clears all elements from the list.  

 
• void * auList::Get (const int elementIdx) 

o Get - gets the object at the specified index. 
o Function: Get  
o Purpose: Get one element from the list.  
o Parameters:  

� elementIdx  index of the element to get  
o Returns:  

� pointer to the element at the specified index  
 

• int auList::GetNum (void) 
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o Function: GetNum  
o Purpose: Get the number of elements in the list.  
o Returns:  

� number of elements in the list.  
 

• void auList::InsertAt (auBase * data, int elementIdx) 
o InsertAt - inserts an object at the specified index in the list. 
o Function: InsertAt  
o Purpose: Inserts an element at the specified index  
o Parameters:  

� data  auBase-derived object to insert  
� elementIdx  index to insert at  

 
• void auList::Rem (auBase * data) 

o Rem - removes object from list. 
o Function: Rem  
o Purpose: Remove an item from the list.   
o Parameters:  

� data  The element to remove NOTE: This will not delete the memory, only 
remove a reference  count from the data and take it out of the list.  If the 
reference count of data is zero, it will delete itself.  

 
The documentation for this class was generated from the following files: 

• aulist.h 
• aulist.cpp 

 

D. AULISTENER CLASS REFERENCE 
#include <aulistener.h> 
 
 
 

1. Public Methods 
• auListener (const char *name=0) 

Constructor. 
 

• virtual ~auListener () 
Destructor. 
 

• bool SetVoiceInputChannel (int channel) 
SetVoiceInputChannel - sets the channel for voice input. 
 

• bool SetHRTF (const char *hrtfName) 
SetHRTF - sets user specified HRTF in ausim3D. 
 

• const char * GetHRTF () const 
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• bool SetPosition (auPosition *pos=NULL) 

SetPosition - updates position. 
 

• void GetPosition (auPosition *pos) 
GetPosition - returns current position. 
 

• int GetID () const 
 

• bool SetMouthOffset (auPosition *pos) 
SetMouthOffset - sets offset for mouth position from ears. 
 

• bool SetMouthRadPattern (auRadPattern *pattern) 
SetMouthRadPattern - sets radiation pattern of mouth. 
 

• void GetMouthRadPattern (auRadPattern *pattern) 
GetMouthRadPattern - gets radiation pattern of mouth. 
 

• bool SetMouthVolume (float dB) 
SetMouthVolume - sets the overall volume of the mouth source. 
 

• bool DecreaseMouthVolume (float dBamount) 
DecreaseMouthVolume - decreases the mouth volume by the specified factor. 
 

• bool IncreaseMouthVolume (float dBamount) 
IncreaseMouthVolume - increases the mouth volume by the specified factor. 
 

• bool SetExclusive (auListener *listener) 
SetExclusive - sets this listener's voice exclusive to specified listener. 
 

• bool RemExclusive () 
RemExclusive - removes the exclusivity of this listener to the specified listener. 
 

• bool SetVolumeForListener (auListener *listener, float dB) 
SetVolumeForListener - sets volume of this listener's voice to the specified auListener. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 

3. Detailed Description 
 
Class: auListener  
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the offset for the listener’s mouth.  Permits output to auServerGUI browser windows, consoles, 
and text files.  
 

4. Constructor and Destructor Documentation 
• auListener::auListener (const char * name = 0) 

o Constructor. 
o Function: Constructor  
o Purpose: Create new listener  
o Parameters:  

� id  - source id for this listener's voice  
� name  - name of the listener  

 
• auListener::~auListener () [virtual] 

o Destructor. 
o Function: Destructor  
o Purpose: Destroys the listener  

 

5. Member Function Documentation 
• bool auListener::DecreaseMouthVolume (float dBamount) 

o DecreaseMouthVolume - decreases the mouth volume by the specified factor. 
o Function: DecreaseMouthVolume  
o Purpose: Decreases the volume of the mouth - uniformly applied across 

radiation pattern if one exists  
o Parameters:  

� dBamount  The amount of decibels to reduce the mouth volume 
Remember: a reduction of 3 dB reduces intensity by 50%  

 
• const char* auListener::GetHRTF () const [inline] 

o GetHRTF - gets name of HRTF file  
 

• int auListener::GetID () const [inline] 
o GetID - returns listener ID number  

 
• void auListener::GetMouthRadPattern (auRadPattern * pattern) 

o GetMouthRadPattern - gets radiation pattern of mouth. 
o Function: GetMouthRadPattern  
o Purpose: Gets the radiation pattern of the mouth  
o Parameters:  

• pos  - auRadPattern representing the radiation pattern of the mouth  
 

• void auListener::GetPosition (auPosition * pos) 
o GetPosition - returns current position. 
o Function: GetPosition  
o Purpose: Gets the position of the listener  
o Parameters:  
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o pos  - auPosition representing the location of the listener  
 

 
• bool auListener::IncreaseMouthVolume (float dBamount) 

o IncreaseMouthVolume - increases the mouth volume by the specified factor. 
o Function: IncreaseMouthVolume  
o Purpose: Increases the volume of the mouth - uniformly applied across radiation 

pattern if one exists  
o Parameters:  

� dBamount  - the amount of decibels to increase the mouth volume 
Remember: a increase of 3 dB increases intensity by 50%  

 
• bool auListener::RemExclusive () 

o RemExclusive - removes the exclusivity of this listener to the specified listener. 
 

• bool auListener::SetExclusive (auListener * listener) 
o SetExclusive - sets this listener's voice exclusive to specified listener. 

 
• bool auListener::SetHRTF (const char * hrtfName) 

o SetHRTF - sets user specified HRTF in ausim3D. 
o Function: SetHRTF  
o Purpose: Sets the HRTF of the listener  
o Parameters:  

• name  - string for HRTF of listener  
 

• bool auListener::SetMouthOffset (auPosition * pos) 
o SetMouthOffset - sets offset for mouth position from ears. 
o Function: SetMouthOffset  
o Purpose: Sets the position of the mouth relative to the ears  
o Parameters:  

• pos  - auPosition representing the relative location of the mouth  
 

• bool auListener::SetMouthRadPattern (auRadPattern * pattern) 
o SetMouthRadPattern - sets radiation pattern of mouth. 
o Function: SetMouthRadPattern  
o Purpose: Sets the radiation pattern of the mouth  
o Parameters:  

• pos  - auRadPattern representing the radiation pattern of the mouth  
 

• bool auListener::SetMouthVolume (float dB) 
o SetMouthVolume - sets the overall volume of the mouth source. 
o Function: SetMouthVolume  
o Purpose: Sets the volume of the mouth - uniformly applied across radiation 

pattern if one exists  
o Parameters:  
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• dB  The volume, in decibels; vol < -120 is equivalent to turning off 
source Remember: a reduction of 3 dB reduces intensity by 50%  

 
• bool auListener::SetPosition (auPosition * pos = NULL) 

o SetPosition - updates position. 
o Function: SetPosition  
o Purpose: Sets the position of the listener  
o Parameters:  

• posit  - auPosition for the location of the listener  
 

• bool auListener::SetVoiceInputChannel (int channel) 
o SetVoiceInputChannel - sets the channel for voice input. 
o Function: SetVoiceInputChannel  
o Purpose: Sets the voice input channel on ausim3D  
o Parameters:  

• channel  - channel number for voice input 
  
• bool auListener::SetVolumeForListener (auListener * otherListener, float dB) 

o SetVolumeForListener - sets volume of this listener's voice to the specified 
auListener. 

o Function: SetVolumeForListener  
o Purpose: sets this channel's volume for a specified listener  
o Parameters:  

• listener  - the auListener  
• dB  volume of the source in dB; 0.0f is maximum (original source 

volume) and negative values reduce volume intensity Remember: a 
reduction of 3 dB reduces intensity by 50%  

 

6. Member Data Documentation 
• auListener::GZ_DECLARE_TYPE_INTERFACE 

 
o Reimplemented from auSource. 

 
The documentation for this class was generated from the following files: 

• aulistener.h 
• aulistener.cpp 

 

E. AUPOSITION CLASS REFERENCE 
#include <auposition.h> 
 

1. Public Methods 
• auPosition () 

Constructor - default. 
 

• auPosition (const float posit[]) 
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Constructor - takes array of 6 floats. 
 

• auPosition (const float x, const float y, const float z, const float h, const float p, const float 
r) 

Constructor - takes 6 individual floats. 
 

• virtual ~auPosition () 
Destructor. 
 

• void Set (const float x, const float y, const float z, const float h, const float p, const float r) 
Set - sets position from 6 individual floats. 
 

• float X (void) 
 

• float Y (void) 
 

• float Z (void) 
 

• float H (void) 
 

• float P (void) 
 

• float R (void) 
 

• void X (float x) 
X - sets x value. 
 

• void Y (float y) 
Y - sets y value. 
 

• void Z (float z) 
Z - sets z value. 
 

• void H (float h) 
H - sets heading. 
 

• void P (float p) 
P - sets pitch. 
 

• void R (float r) 
R - sets roll. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 
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Class: auPosition  
Function: Simple class to represent six floats for source/listener position.  Six floats represent x, 
y, z positions and heading, pitch, and roll.  Ausim3D uses a right-handed coordinate system 
where the default is x-forward, y-left, and z-up.  
 

4. Constructor and Destructor Documentation 
• auPosition::auPosition () 

o Constructor - default. 
o Function: Constructor  
o Purpose: Create new auPosition object with all values - 0.0f  

 
• auPosition::auPosition (const float posit[]) 

o Constructor - takes array of 6 floats. 
o Function: Constructor  
o Purpose: Create new auPosition object  
o Parameters:  

• posit  - array of 6 floats for x,y,z,h,p,r  
 

• auPosition::auPosition (const float x, const float y, const float z, const float h, const float 
p, const float r) 

o Constructor - takes 6 individual floats. 
o Function: Constructor  
o Purpose: Create new auPosition object  
o Parameters:  

• x  - the x value  
• y  - the y value  
• z  - the z value  
• h  - the h value  
• p  - the p value  
• r  - the r value  

 
• auPosition::~auPosition () [virtual] 

o Destructor. 
o Function: Destructor  
o Purpose: Destroy this auPosition object  

 

5. Member Function Documentation 
• void auPosition::H (float h) 

o H - sets heading. 
o Function: H  
o Purpose: Input H into auPosition  
o Parameters:  

� h  - the new heading  
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• float auPosition::H (void) [inline] 
o H - gets heading  

 
• void auPosition::P (float p) 

o P - sets pitch. 
o Function: P  
o Purpose: Input P into auPosition  
o Parameters:  

� px  - the new pitch  
 

• float auPosition::P (void) [inline] 
o P - gets pitch  

 
• void auPosition::R (float r) 

o R - sets roll. 
o Function: R  
o Purpose: Input R into auPosition  
o Parameters:  

� r  - the new roll  
 

• float auPosition::R (void) [inline] 
o R - gets roll  

 
• void auPosition::Set (const float x, const float y, const float z, const float h, const float p, 

const float r) 
o Set - sets position from 6 individual floats. 
o Function: Set  
o Purpose: Set the values of the auPosition  
o Parameters:  

• x  - the x value  
• y  - the y value  
• z  - the z value  
• h  - the h value  
• p  - the p value  
• r  - the r value  

 
• void auPosition::X (float x) 

o X - sets x value. 
o Function: X  
o Purpose: Input X into auPosition  
o Parameters:  

• x  - the new x position  
 

• float auPosition::X (void) [inline] 
o X - gets x value  
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• void auPosition::Y (float y) 
o Y - sets y value. 
o Function: Y  
o Purpose: Input Y into auPosition  
o Parameters:  

� y  - the new y position  
 

• float auPosition::Y (void) [inline] 
o Y - gets y value  

 
• void auPosition::Z (float z) 

o Z - sets z value. 
o Function: Z  
o Purpose: Input Z into auPosition  
o Parameters:  

� z  - the new z position  
 

• float auPosition::Z (void) [inline] 
o Z - gets z value  

 

6. Member Data Documentation 
• auPosition::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented from auRefData. 
 
The documentation for this class was generated from the following files: 

• auposition.h 
• auposition.cpp 

 

F. AURADPATTERN CLASS REFERENCE 
#include <auradpattern.h> 
 

1. Public Methods 
• auRadPattern (float deg0=0.0f, float deg90=0.0f, float deg180=0.0f) 

Constructor. 
 

• virtual ~auRadPattern () 
Destructor. 
 

• float Get (int index) 
Get - gets value at specified index. 
 

• void Set (int index, float value) 
Set - sets the value at the specified index. 
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• int GetSize () 
 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 

 
Class: auRadPattern  
Function: Simple class to represent three floats for source/voice radiation patterns.  Three floats 
represent radiation pattern at 0 deg, +/- 90 deg, and 180 deg relative to source.  
 

4. Constructor and Destructor Documentation 
• auRadPattern::auRadPattern (float deg0 = 0.0f, float deg90 = 0.0f, float deg180 = 0.0f) 

o Constructor. 
o Function: Constructor  
o Purpose: creates new auRadPattern with all values = 0.0f  

 
• auRadPattern::~auRadPattern () [virtual] 

o Destructor. 
o Function: Destructor  
o Purpose: Destroys this auRadPattern  

 

5. Member Function Documentation 
• float auRadPattern::Get (int index) 

o Get - gets value at specified index. 
o Function: Get  
o Purpose: Get the value at the specified index  
o Parameters:  

� index  - the index  
o Returns:  

� float - the value of the radiation pattern at the specified index if index 
out of bounds, returns -9999.0  

 
• int auRadPattern::GetSize () [inline] 

o GetSize - returns number of elements in radiation pattern  
 

• void auRadPattern::Set (int index, float value) 
o Set - sets the value at the specified index. 
o Function: Set  
o Purpose: Set the value at the specified index  
o Parameters:  

� index  - the index  
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� value  - the value of the radiation pattern at the specified index  
 

6. Member Data Documentation 
• auRadPattern::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented from auRefData. 
 
The documentation for this class was generated from the following files: 

• auradpattern.h 
• auradpattern.cpp 

 

G. AUREFDATA CLASS REFERENCE 
#include <aurefdata.h> 
 

1. Public Methods 
• auRefData () 
• virtual ~auRefData () 
 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 

 
Class: auRefData  
Function: Class to package data packets for transmission within AuServerLib  
 

4. Constructor and Destructor Documentation 
• auRefData::auRefData () 

o Function: Constructor  
o Purpose: Create new auRefData  

 
• auRefData::~auRefData () [virtual] 

o Function: Destructor  
o Purpose: Destroys auRefData  

 

5. Member Data Documentation 
• auRefData::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented in auPosition, and auRadPattern. 
 
The documentation for this class was generated from the following files: 

• aurefdata.h 
• aurefdata.cpp 
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H. AUSERVERGUI CLASS REFERENCE 
#include <auserverGUI.h> 
 

1. Public Methods 
• auServerGUI () 

Constructor. 
 

• virtual ~auServerGUI () 
Destructor. 
 

2. Detailed Description 
 
Class: auServerGUI  
Function: Class for displaying pertinent information about auListeners, auSounds, and 
auChannels.  Contains methods for manipulating all parameters of these objects.  Contains 
methods for setting global parameters: Rolloff and Absorption.  
 

3. Constructor and Destructor Documentation 
• auServerGUI::auServerGUI () 

o Constructor. 
o Function: Constructor  
o Purpose: creates new auServerGUI  

 
• auServerGUI::~auServerGUI () [virtual] 

• Destructor. 
• Function: Destructor  
• Purpose: Destroys the gui  

 
The documentation for this class was generated from the following files: 

• auserverGUI.h 
• auserverGUI.cpp 

 

I. AUSOUND CLASS REFERENCE 
#include <ausound.h> 
 

1. Public Methods 
• auSound (const char *filename, const char *name) 

Constructor. 
 

• virtual ~auSound () 
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Destructor. 
 

• bool Play () 
Play - plays sound. 
 

• bool IsPlaying () 
IsPlaying - tells whether sound is playing; TRUE = playing. 
 

• bool Loop () 
Loop - loops sound. 
 

• bool Stop () 
Stop = stops playing. 
 

• bool Rewind () 
Rewind - rewinds sound to beginning. 
 

• bool LinkToListener (auListener *listener) 
LinkToListener - links source to specified auListener. 
 

• bool UnLink () 
Unlink - unlinks source to all auListeners. 
 

• bool SetExclusive (auListener *listener) 
SetExclusive - directs this channel exclusively to specified listener. 
 

• bool RemExclusive () 
RemExclusive - removes any exclusivity of this source to any listener. 
 

• bool SetVolumeForListener (auListener *listener, float dB) 
SetVolumeForListener - sets volume to the specified listener. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Detailed Description 

 
Class: auSound  
Function: Class representing all aspects of an ausim source generated from a wave file.  Contains 
methods for setting/getting source position, radiation patterns, names, and source-specific rolloff.  
Contains methods to link/unlink to specified listener.  
 

4. Constructor and Destructor Documentation 
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• auSound::auSound (const char * filename, const char * name) 
o Constructor. 
o Function: Constructor  
o Purpose: Creates new auSound object  
o Parameters:  

� source  - source ID for this sound  
� name  - name of this sound - also the name of the wav file 

  
• auSound::~auSound () [virtual] 

o Destructor. 
o Function: Destructor  
o Purpose: Destroys this source; closes wav file structure  

 

5. Member Function Documentation 
• bool auSound::IsPlaying () 

o IsPlaying - tells whether sound is playing; TRUE = playing. 
o Function: IsPlaying  
o Purpose: Indicated whether sound is playing; TRUE = playing  
o Returns:  

� bool - true = playing; false = not playing  
 

• bool auSound::LinkToListener (auListener * listener) 
o LinkToListener - links source to specified auListener. 
o Function: LinkToListener  
o Purpose: Link this source to the specified auListener  
o Parameters:  

� listener  - the auListener to link with  
 

• bool auSound::Loop () 
o Loop - loops sound. 
o Function: Loop  
o Purpose: Loops this sound continuously until Stop() called  

 
• bool auSound::Play () 

o Play - plays sound. 
o Function: Play  
o Purpose: Plays this sound once  

 
• bool auSound::RemExclusive () 

o RemExclusive - removes any exclusivity of this source to any listener. 
o Function: RemExclusive  
o Purpose: removes any exclusivity setting from this sound  

 
• bool auSound::Rewind () 
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o Rewind - rewinds sound to beginning. 
o Function: Rewind  
o Purpose: Rewinds the play counter for the wav file to the starting position  

 
• bool auSound::SetExclusive (auListener * listener) 

o SetExclusive - directs this channel exclusively to specified listener. 
o Function: SetExclusive  
o Purpose: sets this sound to only be heard by specified listener  
o Parameters:  

� listener  - the exclusive auListener to be heard by  
 

• bool auSound::SetVolumeForListener (auListener * listener, float volume) 
o SetVolumeForListener - sets volume to the specified listener. 
o Function: SetVolumeForListener  
o Purpose: sets this channel's volume for a specified listener  
o Parameters:  

� listener  - the auListener  
 

• bool auSound::Stop () 
o Stop = stops playing. 
o Function: Stop  
o Purpose: Stops play on this sound  

 
• bool auSound::UnLink () 

o Unlink - unlinks source to all auListeners. 
o Function: LinkToListener  
o Purpose: Link this source to the specified auListener  
o Parameters:  

• listener  - the auListener to link with  
 

6. Member Data Documentation 
• auSound::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented from auSource. 
 
The documentation for this class was generated from the following files: 

• ausound.h 
• ausound.cpp 

 

 

J. AUSOURCE CLASS REFERENCE 
#include <ausource.h> 
 

1. Public Methods 
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• auSource () 
Constructor. 
 

• virtual ~auSource () 
Destructor. 
 

• bool SetPosition (auPosition *pos) 
SetPosition - sets source's position. 
 

• void GetPosition (auPosition *pos) 
GetPosition - gets source's position. 
 

• bool SetRadPattern (auRadPattern *pattern) 
SetRadPattern - sets radiation pattern. 
 

• void GetRadPattern (auRadPattern *pattern) 
GetRadPattern - gets source's radiation pattern. 
 

• bool SetRolloff (float factor) 
SetRolloff - sets source's rolloff. 
 

• const float GetRolloff () 
 

• const char * GetLinkName () 
 

• bool SetSpatial (bool spatial=true) 
SetSpatialOff - removes source from spatialization. 
 

• bool SetPan (float panLeftDB=0.0f, float panRightDB=0.0f) 
SetPan - sets the left and right pan settings. 
 

• float GetPanLeft () 
GetPanLeft - returns pan left setting when spatialization off; 9999 indicates spatialization on. 
 

• float GetPanRight () 
GetPanRight - returns pan right setting when spatialization off; 9999 indicates spatialization on. 
 

• int GetID () 
 

• bool SetVolume (float dB) 
SetVolume - sets the volume of the source in dB. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
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3. Protected Methods 
• bool SetSpatialSettings () 

SetSpatialSettings - sets the spatial and pan settings. 
 

 
4. Protected Attributes 
• char mName [128] 
• char mLinkName [128] 
• int mSourceID 
• auRadPattern * mRad 
• auPosition * mPos 
• float mRolloff 
• float mPanLeft 
• float mPanRight 
• bool mSpatial 
• float mVolume 
• bool isConfigured 
 
5. Detailed Description 

 
Class: auSource  
Function: Base class for auSound and auChannel classes.  Contains methods for setting/getting 
source position, radiation patterns, names, and source-specific rolloff.  Contains methods to 
link/unlink to specified listener.  NOTE: Developers should NOT directly instantiate objects of 
this class.  
 

6. Constructor and Destructor Documentation 
• auSource::auSource () 

o Constructor. 
o Function: Constructor  
o Purpose: Creates new auSource object  

 
• auSource::~auSource () [virtual] 

o Destructor. 
o Function: Destructor  
o Purpose: Destroy this source  

 
 

7. Member Function Documentation 
• int auSource::GetID () [inline] 

o GetID - returns source ID  
 

• const char* auSource::GetLinkName () [inline] 
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o GetLinkName - returns name of auListener linked with  
 

• float auSource::GetPanLeft () 
o GetPanLeft - returns pan left setting when spatialization off; 9999 indicates 

spatialization on. 
o Function: GetPanLeft  
o Purpose: gets the pan left setting when spatialization is off; 9999 indicates 

spatialization on  
o Returns:  

• pan left setting, if not spatial return 9999.0  
 

• float auSource::GetPanRight () 
o GetPanRight - returns pan right setting when spatialization off; 9999 indicates 

spatialization on. 
o Function: GetPanRight  
o Purpose: gets the pan right setting when spatialization is off; 9999 indicates 

spatialization on  
o Returns:  

• pan right settings  
 

• void auSource::GetPosition (auPosition * pos) 
o GetPosition - gets source's position. 
o Function: GetPosition  
o Purpose: Get the position of this source  
o Parameters:  

• pos  - auPosition of source 
o Reimplemented in auListener. 

 
• void auSource::GetRadPattern (auRadPattern * pattern) 

o GetRadPattern - gets source's radiation pattern. 
o Function: GetRadPattern  
o Purpose: Get the radiation pattern of this source  
o Parameters:  

� pattern  - auRadPattern of source  
 

• const float auSource::GetRolloff () [inline] 
o GetRolloff - gets source's rolloff factor  

 
• bool auSource::SetPan (float panLeftDB = 0.0f, float panRightDB = 0.0f) 

o SetPan - sets the left and right pan settings. 
o Function: SetPan  
o Purpose: sets this source as spatialized with specified pan settings  
o Parameters:  

� panLeftDB  gain for left output when non-spatialized; 0.0 = full 
volume, -120.0 = fully attenuated  
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� panRightDB  gain for right output when non-spatialized; 0.0 = full 
volume, -120.0 = fully attenuated  

 
• bool auSource::SetPosition (auPosition * pos) 

o SetPosition - sets source's position. 
o Function: SetPosition  
o Purpose: Set the position of this source  
o Parameters:  

� pos  - auPosition of source  
o Reimplemented in auListener. 

 
• bool auSource::SetRadPattern (auRadPattern * pattern) 

o SetRadPattern - sets radiation pattern. 
o Function: SetRadPattern  
o Purpose: Set the radiation pattern of this source  
o Parameters:  

� pattern  - auRadPattern of source 
 

• bool auSource::SetRolloff (float factor) 
o SetRolloff - sets source's rolloff. 
o Function: SetRolloff  
o Purpose: Sets the source specific rolloff multiplier - multiplies against global 

rolloff factor range limited to (0.0f, 5.0f) 0.0f = no individualized source-
specific rolloff factor 5.0f = maximum source-specific rolloff multiplicative 
factor  

o Parameters:  
� factor  - multiplicative factor for source specific rolloff  

 
• bool auSource::SetSpatial (bool spatial = true) 

o SetSpatialOff - removes source from spatialization. 
o Function: SetSpatial  
o Purpose: sets this source as either non-spatialized or spatialized  
o Parameters:  

� spatial  - bool indicating whether spatial or not  
 

• bool auSource::SetSpatialSettings () [protected] 
o SetSpatialSettings - sets the spatial and pan settings. 
o Function: SetSpatialSettings  
o Purpose: sets this source's spatialization and pan settings  

 
• bool auSource::SetVolume (float dB) 

o SetVolume - sets the volume of the source in dB. 
o Function: SetVolume  
o Purpose: sets the volume of this source  
o Parameters:  
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� dB  volume of the source in dB; 0.0f is maximum (original source 
volume) and negative values reduce volume intensity Remember: a 
reduction of 3 dB reduces intensity by 50%. 

 

8. Member Data Documentation 
• auSource::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented from auBase. 
 

• bool auSource::isConfigured [protected] 
o indicates whether source is configured  

 
• char auSource::mLinkName[128] [protected] 

o name of the listener this source is linked to  
 

• char auSource::mName[128] [protected] 
o name of this source  

 
• float auSource::mPanLeft [protected] 

o pan left setting for this source when spatialization off  
 

• float auSource::mPanRight [protected] 
o pan right setting for this source when spatialization off  

 
• auPosition* auSource::mPos [protected] 

o  the position of this source  
 

• auRadPattern* auSource::mRad [protected] 
o radiation pattern for this source  

 
• float auSource::mRolloff [protected] 

o rolloff factor of this source  
 

• int auSource::mSourceID [protected] 
o source ID number  

 
• bool auSource::mSpatial [protected] 

o indicates whether spatialization is ON (true) or OFF (false) 
 

• float auSource::mVolume [protected] 
o stored volume setting for this source  
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The documentation for this class was generated from the following files: 
• ausource.h 
• ausource.cpp 

 

K. AUSYSTEM CLASS REFERENCE 
#include <ausystem.h> 
 

1. Public Methods 
• auSystem (const char *name=0) 

Constructor. 
 

• virtual ~auSystem () 
Destructor. 
 

• void Run (void) 
Set the system to Run. This is a blocking call. 
 

• bool IsConfigured (void) const 
 

• void Config (void) 
Configure the system. 
 

• void Exit () 
Exit - quit application. 
 

• void Init (int argc=0, char **argv=NULL) 
Init - init the application. 
 

• void SetUpdateInterval (const double interval) 
SetUpdateInterval - Set the tick interval time. 
 

 
2. Public Attributes 
• GZ_DECLARE_TYPE_INTERFACE 
 
3. Constructor and Destructor Documentation 
• auSystem::auSystem (const char * name = 0) 

o Constructor. 
o Function: Constructor  
o Purpose: Creates new auSysytem  

 
• auSystem::~auSystem () [virtual] 

o Destructor. 
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o Function: Destructor  
o Purpose: destroys auSysytem  

 

4. Member Function Documentation 
• void auSystem::Config (void) 

o Configure the system. 
o Function: Config  
o Purpose: Public function to configure the system.  Typically called once to 

finish setting up all the au classes.  
 

• void auSystem::Exit () 
o Exit - quit application. 
o Function: Exit  
o Purpose: exits from auSysytem and shuts down  

 
• void auSystem::Init (int argc = 0, char ** argv = NULL) 

o Init - init the application. 
 

• bool auSystem::IsConfigured (void) const [inline] 
o Has the auSystem been configured yet?  

 
• void auSystem::Run (void) 

o Set the system to Run. This is a blocking call. 
o Function: Run  
o Purpose: Sets the auSystem in motion, never to return until an exit event is 

triggered.  
 

• void auSystem::SetUpdateInterval (const double interval) 
o Set the tick interval time. 
o Function: SetTickInterval  
o Purpose: Set the time interval that the system should use for the “tick” message. 

This is an optional message that gets reliably sent out every interval seconds.  
o Parameters:  

• interval  - In seconds  
 

5. Member Data Documentation 
• auSystem::GZ_DECLARE_TYPE_INTERFACE 

o Reimplemented from auBase. 
 
The documentation for this class was generated from the following files: 

• ausystem.h 
• ausystem.cpp 
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L. UPDATEGUI CLASS REFERENCE 
#include <auserverGUI.h> 
 

1. Public Methods 
• UpdateGUI () 

Constructor. 
 

• virtual ~UpdateGUI () 
Destructor. 
 

2. Detailed Description 
 
Class: UpdateGUI  
Function: Simple thread class to manage continuous updating of gui parameters. 
NOTE: Developers should NOT directly instantiate objects of this class.  Use of auServerGUI 
will automatically create this thread for automatic updating.  
 

3. Constructor and Destructor Documentation 
• UpdateGUI::UpdateGUI () 

o Constructor. 
o Function: Constructor  
o Purpose: creates new UpdateGUI thread  

 
• UpdateGUI::~UpdateGUI () [virtual] 

o Destructor. 
o Function: Destructor  
o Purpose: Destroys UpdateGUI thread  

 
The documentation for this class was generated from the following files: 

• auserverGUI.h 
• auserverGUI.cpp 
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APPENDIX C. VOICE LATENCY DATA 

A. INTRODUCTION 
The following table lists the observed latency measurements for both the 

Ausim3D GoldServe and DirectVoice VoIP live voice implementations. 

 

Run GoldServe DirectVoice
1 13.4 186 
2 13.2 212 
3 13.2 234 
4 13.1 196 
5 13.0 206 
6 13.4 214 
7 13.5 202 
8 12.8 218 
9 13.1 186 
10 13.0 220 
11 13.4 190 
12 13.4 230 
13 13.1 196 
14 13.1 226 
15 12.7 192 
16 13.3 222 
17 13.0 184 
18 12.9 216 
19 13.0 190 
20 13.2 218 
21 13 190 
22 13 216 
23 12.8 192 
24 --  222 
25  -- 194 
26  -- 186 
27  -- 204 
28  -- 186 
29  -- 218 
30  -- 200 
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B. AUSIM3D GOLDSERVE DATA 

 
Run 1: 
 

 
 
Run 2: 

 
 
Run 3: 
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Run 6: 
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Run 7: 

 
 
Run 8: 

 
 
Run 9: 

 
 
 

156 



Run 10: 
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Run 13: 
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Run 16: 

 
 
Run 17: 
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Run 19: 

 
 
Run 20: 
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160 



Run 22: 

 
 
Run 23: 

:  
 

C. DIRECTVOICE DATA 
Run 1: 
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Run 5: 
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Run 8: 
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Run 11: 
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Run 14: 
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Run 17: 
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Run 20: 
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Run 23: 
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Run 26: 

 
 
Run 27: 
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Run 29: 

 
 
Run 30: 
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D. SAMPLE DIRECTVOICE LIVE VOICE 
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